CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs II [2.2]

Workbook

Outline:

Pg 24-34

Proving Conditional Statements

- Conditional Statements
- Methods of Proving Conditional Statements
- Direct Proof
- Proof by Contrapositive
- Proof by Contradiction

Converse Statements and Equivalent Statements

Converse Statements

Pg 2-18

Pg 19-23

Universal and Existential Quantifiers

- Universal Quantifier
- Existence Quantifier
- Negation of Universal and Existence Statement
- Disproving a Universal Statement
- Disproving an Existence Statement

Other Proof Techniques

Telescopic Cancelling

Proof by Induction

Pg 35-42

Learning Objectives:

- SM12 [2.2.1] Direct proofs, proofs by contrapositive and contradiction.
- SM12 [2.2.2] Converse and the equivalent of a conditional statement.
- SM12 [2.2.3] Proofs involving the universal and existence quantifiers.
- SM12 [2.2.4] Proofs by induction and telescoping series.

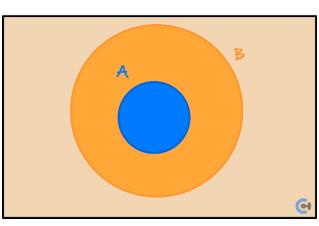
Section A: Proving Conditional Statements

Sub-Section: Conditional Statements

Context

After this workbook, you will have the skills to tackle proof questions in Unit 3 and 4 level!

Exploration: Visualisation of Conditional Statements



If A, then B.

Definition

Conditional Statements

- Conditional Statement: ________
- Note: Notation for "implies": ⇒

"Hypothesis \Rightarrow Conclusion"

NOTE: Order Matters!

Let's look at some questions together!

Question 1 Walkthrough.

Write a conditional statement for the following:

A customer will receive a coupon if they spend \$500.

Recall!

Active Recall: Conditional statements

The relationship between the hypothesis and the conclusion is that ______

Your Turn!

Question 2

Write a conditional statement for the following:

Doing strength training grows your muscles.

Question 3 Additional Question.

Write a conditional statement	t for the following:
	All books in the library's collection are about history.
<u> </u>	
Space for Personal Notes	

Sub-Section: Methods of Proving Conditional Statements

Okay, how do we prove them?

Proving Conditional Statements

Space for Personal Notes

- 1. Direct Proof
- 2. Proof by Contrapositive
- 3. Proof by Contradiction

Sub-Section: Direct Proof

Context

The proof question for the most recent VCAA Exam 1 was a direct proof!

REMINDER

- From last week, we found that an even number can be written in the form:
- An odd number can be written in the form:
- If a number is divisible by 3, then it can be written in the form:
- If a number is not divisible by 3, then it can be written in the form:
- For proofs involving divisibility, we often need to split into ______.

Method 1: Direct Proof

- The simplest method of proof. These are the proofs we have been working on in [2.1].
- Here we are not altering the statement we need to prove.

Question 4 Walkthrough.

Prove that if n is even, then n^3 is divisible by 8.

NOTE: We did not change the statement itself! Hence, a direct proof.

Recall!

Active Recall: Direct proofs

In a direct proof, we ______ the original statement.

Your Turn!

Question 5

Prove that for all integers m and n, if m is divisible by 5 and n is divisible by 2, then 10m + 3n is even.

Question 6 Additional Question.
Prove that if the last two digits of n are divisible by 4, then n is divisible by 4.
Space for Personal Notes

Sub-Section: Proof by Contrapositive

Context

Check out this question from the Sample Exam for Specialist Mathematics Units 3 and 4 Exam 2, which asks about contrapositive statements.

Question 1

Consider the following statement.

'For all integers n, if n^2 is even, then n is even.'

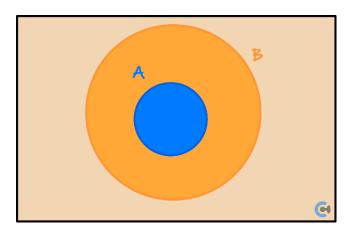
Which one of the following is the contrapositive of this statement?

- **A.** For all integers n, if n^2 is odd, then n is odd.
- **B.** There exists an integer n such that n^2 is even and n is odd.
- C. There exists an integer n such that n is even and n^2 is odd.
- **D.** For all integers n, if n is odd, then n^2 is odd.
- **E.** For all integers n, if n is even, then n^2 is even.

A

What is a contrapositive statement?

Contrapositive Statement



(Contrapositive Statement of $A \Rightarrow B$) is $\neg B \Rightarrow \neg A$

NOTE: Swap the order and negate the statements.

Question 7 Walkthrough.

Write down a contrapositive of the following statement:

If you starve for a day, then you are hungry.

NOTE: We negate and flip the order.

Recall!

Active Recall: Contrapositive statements

The contrapositive of the statement $A \Rightarrow B$ is:

Your Turn!

Question 8

Write down the contrapositive of the following statement:

If all the sides of a triangle have equal length, then the triangle is equilateral.

Question 9 Additional Question.

Write down the contrapositive of the following statement:

If x is an irrational number, then \sqrt{x} is irrational as well.

<u>Discussion:</u> What happens when you prove the contrapositive?

Method 2: Proof by Contrapositive (Indirect Proof)

Instead of proving $A \Rightarrow B$, we can prove its contrapositive $\neg B \Rightarrow \neg A$.

Prove a contrapositive statement instead.

- Considered to be an ______, as the original statement is altered.
- Steps:
 - 1. Set up the contrapositive statement.
 - 2. Prove the contrapositive statement to be true.
 - 3. Conclude by saying "As contrapositive is true, the original statement is true."

Let's look at some questions together!

Question 10 Walkthrough.

Prove the following statement by contrapositive:

If $x^2 - 6x + 5$ is even, then x is odd.

<u>Discussion:</u> Imagine if we tried to do a direct proof for the previous question. Would it be easy?

Active Recall: Proof by Contrapositive

Steps:

- 1. Set up the ______ statement.
- 2. Prove the contrapositive statement to be ______.
- 3. Conclude by saying "_____.'

Recall!

Your Turn!

Question 11

Prove the following conditional statement using contrapositive:

Let $x \in R$. If x is irrational, then $\sqrt{x + \frac{1}{5}}$ is irrational.

Question 12 Additional Question.

Prove the following statement below by first writing down its contrapositive.:

Let
$$a, b \in R^+$$
. If $\sqrt{ab} \neq \frac{a+b}{2}$, then $a \neq b$.

Note: This means that if the geometric mean and arithmetic mean of two numbers a and b are not equal, then a and b are themselves not equal.

Space for Personal Notes

Sub-Section: Proof by Contradiction

Context

Check out this proof-by-contradiction question from the Specialist Mathematics Units 3 and 4 Sample Exam 2. Give it a try after completing this sub-section!

Question 4 (3 marks)

Use proof by contradiction to prove that if *n* is odd, where $n \in \mathbb{N}$, then $n^3 + 1$ is even.

What is a contradicting statement?

Contradicting Statement

(Contradicting Statement of $A \Rightarrow B$) is $A \Rightarrow \neg B$

Negate the ______.

Question 13

State the contradicting statement of the following:

If x is rational, then x^2 is rational.

<u>Discussion:</u> If we prove that the contradicting statement is false, then what are we also proving?

Method 3: Proof by Contradiction (Indirect Proof)

To Prove $A \Rightarrow B$

Assume $A \Rightarrow \neg B$ is true

And show that the assumption is FALSE.

- Steps:
 - 1. First, assume that the contradicting statement is true.
 - 2. Show that the assumption has a contradiction, and is hence false.
 - 3. Conclude by saying "Since the contradicting statement is false, the original statement is true."
- > Considered to be an ______, as the original statement is altered.

A

Let's look at some questions together!

Question 14 Walkthrough.

Prove the simple statement below using contradiction:

log₅(9) is irrational

Active Recall: Steps for Proof by Contradictions

- > Steps:
 - 1. First, assume that the contradicting statement is ______.
 - 2. Show that the assumption ______, and is hence false.
 - 3. Conclude by saying "______"

Active Recall: De Morgan's Law

$$\neg(A \land B) = \underline{\hspace{1cm}}$$

$$\neg(A \lor B) = \underline{\hspace{1cm}}$$

Your Turn!

Question 15

Let $a, b \in R$. Prove that if a + b > 150, then a > 75 or b > 75.

Question 16 Additional Question.

Use proof by contradiction to prove the following statement:

Let
$$x, y > 0$$
 and $x \neq y$. Show that $\frac{x}{y} + \frac{y}{x} > 2$.

Key Takeaways

- ☑ Direct proof involves proving without changing the conditional statement.
- Arr The contrapositive of a statement $A \rightarrow B$ is given by $\neg B \rightarrow \neg A$.
- ☑ Proof by contrapositive involves proving the contrapositive of the conditional statement instead.
- ✓ Proof by contradiction requires first assuming that the contradicting statement is true, then showing contradiction.

Space for Personal Notes

Section B: Converse Statements and Equivalent Statements

Sub-Section: Converse Statements

Context: Sam is being Converse

Sam is being annoying and talks in the opposite direction of what Jacob says:

Jacob: "If you like chocolate, then you are Sam"

What would Sam say?

Sam:

• Here we call Sam the "______" of Jacob.

Definition

Converse Statements

Definition: Conditional statement that flows in the opposite direction.

(Converse Statement of $A \Rightarrow B$) is $B \Rightarrow A$

Question 17 Walkthrough.

For the following statement, write down the converse statement, and conclude whether the converse is true:

If a shape is a square, then it is a rectangle.

NOTE: This is NOT the same as negation! It's simply an opposite flow.

Recall!

Active Recall: Converse statements

The converse of the statement $A \Rightarrow B$ is

Your Turn!

Question 18

For the following statement, write down the converse statement, and conclude whether the converse is true:

If x is divisible by 2 and 5, then it is divisible by 10.

<u>Discussion:</u> If your friend told you that x is divisible by 2 and 5, is that equivalent to x is divisible by 10?

What happens if the converse is also true?

Equivalent Statements (Biconditional)

It is a conditional statement where if the original is _______ its converse is

$$A \Rightarrow B$$
 and $B \Rightarrow A$

$$A \Leftrightarrow B$$

A is true, if and only if B

- ► In description, *B* is true _______ *A* is true.
- To prove equivalent statements, we prove each direction separately.

Question 19 Walkthrough.

Let n be an integer. Prove that n is even, if and only if 3n + 3 is odd.

NOTE: For if and only if (equivalent statement), we must prove both converse statements.

Recall!

Active Recall: Proving biconditional statements

 \blacktriangleright To prove an "if and only if" statement $A \Leftrightarrow B$, we need to show both _____ and ____

Your Turn!

Question 20

Let n be an integer. Prove that n is odd, if and only if n^2 is odd.

Ouestion	21	Additional	Question.
O ucouon		Liuuiuuiiui	Oucouon.

Let x be a real number. Show that $x^2 + y^2 = 0$, if and only if x = 0 and y = 0.

Key Takeaways

- ightharpoonup The converse statement of $A \to B$ is given by $B \to A$.
- ☑ Equivalent statement is when a statement and its converse both are proved to be true.
- ☑ "If and only if" stands for equivalent statement.

Space for Personal Notes

Section C: Universal and Existential Quantifiers

Sub-Section: Universal Quantifier

How do we represent all members of a given set?

Universal Quantifiers

______ is a way to represent all members of a given set.

For all real numbers x, x^2 is never negative.

Notation: ∀ (Universal Quantifier) _____

$$\forall x \in R, x^2 \geq 0$$

<u>Discussion:</u> Where does the symbol ∀ come from?

Question 22 Walkthrough.

Convert the following conditional statement using the universal quantifier.

For all real numbers x, e^x is strictly positive.

Recall!

Your Turn!

Question 23

Rewrite the following statement using the universal quantifier:

For all integers n, $n^2 - 4n$ is an integer.

Question 24 Additional Question.

Rewrite the following statement using the universal quantifier:

For all natural numbers n, n is at most equal to n^2 .

Sub-Section: Existence Quantifier

How do we represent certain members of a given set?

Existence Quantifiers

> ______ is a way to represent certain members of a given set.

There exists an integer such that $x^2 - x - 12 = 0$.

Notation: 3 (Existential Quantifier) ______.

$$\exists x \in \mathbb{Z}, x^2 - x - 12 = 0.$$

<u>Discussion:</u> How can we prove the existence statement?

Question 25 Walkthrough.

Convert the following conditional statement using the existence quantifier.

There exist a real number x such that $x^2 + 4 = 16$.

Recall!

Active Recall: Existence quantifier

The symbol for the existence quantifier ∃ represents ______

Your Turn!

Question 26

Rewrite the following statement using the existence quantifier.

There exists a positive whole number n such that $2^n = 4$.

Question 27 Additional Question.

Rewrite the following statement using the existence quantifier.

There exists a positive real number x such that $x^2 < x$.

Sub-Section: Negation of Universal and Existence Statement

Discussion: What would be the opposite of saying that all living humans breathe?

Discussion: What would be the opposite of saying that some humans are taller than 190 cm?

Negation of Universal and Existence Statements

- They are opposites of each other (with opposite conclusions).
- ¬Universal Statement = Existence Statement with Opposite Conclusion
- And vice versa.

Question 28 Walkthrough.

Write down the negation of the following statements.

- **a.** For all natural numbers, $3n \ge 2n 1$.
- **b.** There exists a real number x such that $x^2 = 4$.

Recall!

Active Recall: Negation involving the universal and existence quantifiers.

- ¬ Universal statement =
- ¬ Existence statement =

Your Turn!

Question 29

Write down the negation for the following statements below.

- **a.** If *n* is a natural number, then n + 1 > n.
- **b.** There exists an integer k such that $k^2 = k + 4$.

Question 30 Additional Question.

Write the negation for the following statements below.

- **a.** If *n* is a natural number, then $6n^2 + 4n + 1$ is divisible by *n*.
- **b.** There exist integers p and q such that $q \neq 0$ such that $\pi = \frac{p}{q}$.

Sub-Section: Disproving a Universal Statement

Context

Consider the following questionable statement:

"All of the vehicles in the carpark are black."

- How can you disprove this statement?
- Basically, you have just provided a ______

Disproving Universal Statement

- We prove the opposite (negation) existence statement.
- We call this proof by ______.
 - Giving a counter example will be proving an opposite existence statement.

Question 31 Walkthrough.

Disprove the following statement: For all positive integers m, if m is prime then $m^2 + 4$ is also prime.

NOTE: We simply give ourselves a counter example to disprove a universal statement.

Recall!

Active Recall: Disproving a universal statement.

To show that a "for all ..." statement is not true, it suffices to provide a _____

Your Turn!

Question 32

Disprove the following statement:

$$\forall a, b \in R$$
, if $a^2 = b^2$ then $a = b$.

Question 33 Additional Question.

Disprove the statement given below:

For all positive integers n, $2^n > n^2$.

Sub-Section: Disproving an Existence Statement

Disproving Existence Statements

We prove the opposite (negation) ______.

Question 34 Walkthrough.

Disprove the following statement: There exists $n \in N$ such that $n^2 + 9n + 20$ is a prime number.

NOTE: To disprove their exist statement, you must show the opposite universal statement as true.

Recall!

Active Recall: Disproving an existence statement.

To disprove a "there exists ..." statement, we need to show ______

Your Turn!

Question 35

Disprove the following statements:

There exists a real number x, such that $10 + 3x^2 = 3 + x^2$.

Question 36 Additional Question.

Disprove the following statement below:

There exists $n \in \mathbb{N}$ so that $n^3 - 2n^2 + 5n + 4$ is divisible by n + 2.

Key Takeaways

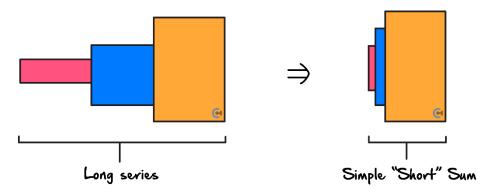
- There exists a quantifier ∃.
- ✓ For all quantifiers ∀.
- ✓ To prove a there exists statement, simply give an example.
- ✓ To prove for all statements, you must prove for all values.
- ✓ To disprove a there exist statement, prove the opposite for all statements.
- ✓ To disprove a for-all statement, prove the opposite there exist statement.

Section D: Other Proof Techniques

Sub-Section: Telescopic Cancelling

Telescopic Cancelling

- Telescoping series is a series (sum of terms) where all terms cancel out except for the ______
- The name comes from the visualisation as shown below.



Proofs of telescoping series can be done via ______

Space for Personal Notes

Question 37 Walkthrough.

a. Using partial fractions, find the values of a and b such that:

$$\frac{3}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$$

b. Hence, prove that:

$$\frac{3}{1 \times 2} + \frac{3}{2 \times 3} + \dots + \frac{3}{n \times (n+1)} = \frac{3n}{n+1}$$

Recall!

A

Active Recall: Telescoping sums

The key idea for telescoping sums is to _______

Your Turn!

Question 38

a. Using partial fraction decomposition, find values of A and B such that:

$$\frac{1}{n^2 + 3n + 2} \equiv \frac{A}{n+1} + \frac{B}{n+2}$$

b. Hence, prove that:

$$\sum_{n=1}^{k} \frac{1}{n^2 + 3n + 2} = \frac{k}{2(k+2)}$$

Question 39 Additional Question.

By using the fact that $\frac{2(2k+1)}{k^2(k+1)^2} = \frac{2}{k^2} - \frac{2}{(k+1)^2}$, show that:

$$\frac{2\times 5}{2^2\times 3^2}+\cdots+\frac{2(2n+1)}{n^2(n+1)^2}=\frac{(n-1)(n+3)}{2(n+1)^2}$$

Sub-Section: Proof by Induction

Context

Check out this question from the Specialist Mathematics Units 3 and 4 Sample Exam.

Question 3 (4 marks)

Prove by mathematical induction that the number $9^n - 5^n$ is divisible by 4 for all $n \in \mathbb{N}$.

Proof by Induction

- We will be following the given steps:" _______.
 - **Step T:** Test the statement for its first possible value.
 - **Step A:** Assume that the statement is true for n = k.
 - **Step P:** Prove that if the statement holds true for n = k, It also holds true for n = k + 1.
 - Add "By Assumption".
 - Step E: "By the principle of mathematical induction, the statement is true for a set of values."

Space for Personal Notes

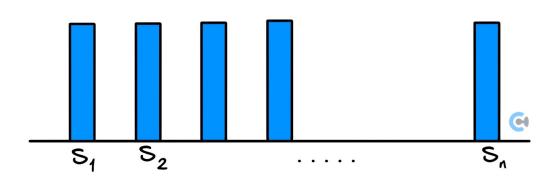
Question 40 Walkthrough.

Prove that for $n \in N$, $1 + 3 + 5 \cdots (2n - 1) = n^2$.

<u>Exploration</u>: How do we visualise the idea of proof by induction?

- Imagine we have _____ of statements we need to prove.
- Each domino is a statement with a specific value ______.

Dominos of Statement



CONTOUREDUCATION

- In Step 1: We test/prove the first statement.
- In Steps A and P: We prove the relationship between a "previous" domino block, and the "next" one.
- If one domino falls, the next one also falls.
- Since the first one falls, all of them fall!

Recall!

Active Recall: Proofs by induction

?

- When doing a proof-by-induction question, we have four key steps:
 - 1. _____ the _____ holds.
 - 2. _____ the statement holds for an n =____ in the required set of values for k.
 - 3. _____ that the statement holds for _____.
 - 4. _____ using the principle of _____ that the statement holds for all k.

Space for Personal Notes

Your Turn!

Question 41

Prove that for all $n \in N$, we have:

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

NOTE: $1 + 2 + \cdots + n$ can be written as:

$$\sum_{i=1}^{n} i$$

Question	42	Additional	Question.
Oucsuon	74	Auuiuviiai	Outsuon.

Prove by induction that for any natural number $n \ge 1$, $n < 2^n$.

Key Takeaways

- ☑ For telescoping series proof, always look for terms to cancel each other.
- For induction proof always use TAPE: Test for the first case, assume it's true for n = k, prove for n = k + 1 and explain at the end.

Space for Personal Notes

Contour Check

<u>Learning Objective</u>: [2.2.1] – Direct proofs, proofs by contrapositive and contradiction.

Key Takeaways				
□ Direct proof is the conditional statement	t.			
□ The contrapositive of a statement $A \rightarrow B$ is given by				
□ Proof by contrapositive is proving the				
Proof by contradiction requires first and showing contradiction.				
<u>Learning Objective</u> : [2.2.2] - Converse and the equivalent of a conditional statement.				
statement.				
Statement. Key Takeaways				
Key Takeaways				

<u>Learning Objective</u>: [2.2.3] - Proofs involving the universal and existence quantifiers.

quantifiers.				
Key Takeaways				
□ There exists a quantifier ∃.				
☐ For all quantifiers ∀.				
■ To prove a there exists statement, simply				
□ To prove for all statements, you must prove for				
■ To disprove a there exist statement,				
■ To disprove a for-all statement,				
<u>Learning Objective</u> : [2.2.4] - Proofs by induction and telescoping series.				
Key Takeaways				
For telescoping series proof, always look for terms to				
For induction proof always use TAPE:				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

1-on-1 Maths Consults

What Are 1-on-1 Maths Consults?

- Individual 30-minute consultations via Zoom with a Contour tutor, where you can ask questions, clarify doubts, and get tips, advice, and support in a one-on-one format.
- Complimentary (yes, entirely free) with your Contour enrolment (as long as you're enrolled in a Maths subject at Contour). You can book up to a week in advance.

SAVE THE LINK. AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link bit.ly/maths-consults

