

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Further Proof Techniques [2.2]

Test Solutions

20 Marks. 22 Minutes Writing.

Results:

Test Questions	/20	

Section A: Test Questions (20 Marks)

Ques	Question 1 (4 marks)				
Tick whether the following statements are true or false .					
	Statement	True	False		
a.	De Morgan Law says that $\neg(A \lor B) = \neg A \lor \neg B$.		✓		
b.	Contrapositive statement of "if you are a Contour student then you will enjoy learning maths" is given by "if you enjoy learning maths then you are a Contour student".	_	✓		
HI	t should be: If you do not enjoy learning maths then you are Not a contour student.				
c.	Proof by contradiction requires assuming that the contradicting statement is true.	✓			
d.	Equivalent statement is when a statement and its converse are both true.	√			
e.	Universal statements can be proven by simply giving an example within the set.		✓		
f.	To disprove an existence statement, you prove the universal statement with the opposite conclusion.	✓			
g.	In proof by induction, you can assume that $P(1), P(2), P(3), P(k)$ is true and from there, prove that $P(k) \rightarrow P(k+1)$.		Y		
	Only assume $P(k)$ is true for arbitrary k , then prove $P(k + 1)$.				
h.	Induction proof can be done for when k is all real numbers.		✓		

CONTOUREDUCATION

Question 2 (4 marks)

Let $n \in \mathbb{N}$. If $5^n - 1$ is prime, then n is odd.

a. Write down the contrapositive of the statement. (1 mark)

If n is even, $5^n - 1$ is not prime (has other factors than itself and 1).

b. Prove that the contrapositive is true. (3 marks)

Then $5^{n}-1=5^{2n}-1$ $=(5^{k})^{2}-1^{2}=(5^{k}-1)(5^{k}+1)$ $\vdots 5^{n}-1 \text{ has a non } 5,1 \text{ factor}$ $5^{n}-1 \text{ is not prime}$ $\vdots 5^{n}-1 \text{ is prime} \Rightarrow n \text{ odd}$

Question 3 (3 marks)

Prove that if x is irrational then, $\sqrt{x+1}$ is irrational. Use the contradiction method in your proof.

Suppose
$$x \in \mathbb{Q}^2$$
 AND $\int x + 1 \in \mathbb{Q}$

$$\int x + 1 = \int_{\mathbb{Q}^2}^{\mathbb{Z}^2}$$

$$\chi = \int_{\mathbb{Q}^2 - \mathbb{Q}^2}^{\mathbb{Z}^2 - \mathbb{Q}^2}$$

$$\int_{\mathbb{Q}^2 - \mathbb{Q}^2}^{\mathbb{Z}^2 - \mathbb{Q}^2}$$

$$\int_{\mathbb{Q}^2 - \mathbb{Q}^2}^{\mathbb{Z}^2 - \mathbb{Q}^2}$$
So $x \in \mathbb{Q}$ (contradiction)

Question 4 (4 marks)

Prove that the following is true for all positive integers n: n is odd if and only if $3n^2 + 8$ is odd.

n odd
$$\Rightarrow$$
 $3n^2+8$ odd

 $n=2k+1$, $k\in 2$

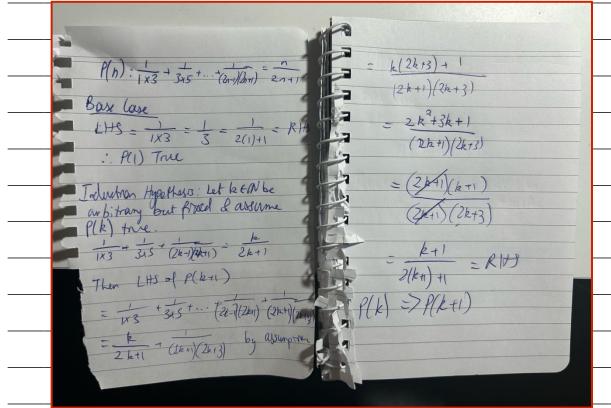
Then $3n^2+8=3(2k+1)^2+8$
 $=3(4k^2+4k+1)+8$
 $=(2k^3+12k+1)$
 $=2(6k^2+6k+5)+1$

But $6k^2+6k+5\in 2$, so result to odd

 $3n^2+8$ odd \Rightarrow n odd

(equivalent to never \Rightarrow $3n^2+8$ even

If n is even, then $n=2k$ for some int. k .


Therefore $3n^2+8=3(2k)^2+8=12k^2+8$
 $=2(6k^2+4)$,

which is even.

Question 5 (5 marks)

Prove that $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$ for all $n \in \mathbb{N}$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

