

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs II [2.2]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2-Pg 13
Supplementary Questions	Pg 14-Pg 26

Section A: Compulsory Questions

Sub-Section [2.2.1]: Direct and Indirect Proofs

Question 1

Prove the following statement using a direct proof: The sum of two even integers is always even.

Let the integers be m and n. Let $p, q \in \mathbb{Z}$, and since m and n are even we can write

$$m + n = 2p + 2q$$
$$= 2(p + q)$$
$$= 2k$$

which is even since $k \in \mathbb{Z}$.

Question 2

Prove the following statement using a proof by contrapositive: If n^3 is even, then n is even.

We will prove the contrapositive: n is odd $\implies n^3$ is odd. Let n=2k+1 where $k\in\mathbb{Z}$, then

$$n^{3} = (2k + 1)^{3}$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{2} + 6k^{2} + 6) + 1$$

$$= 2m + 1$$

where $m \in \mathbb{Z}$ and so $n^3 = 2m + 1$ is odd.

ove the following	ng statement using a proof by contradiction: $\sqrt{5} + \sqrt{3} < 4$.	
Suppo	se for a contradiction that $\sqrt{5} + \sqrt{3} \ge 4$. Then	
	$(\sqrt{5} + \sqrt{3})^2 \ge 16$	
	$5 + 3 + 2\sqrt{15} \ge 16$	
	$2\sqrt{15} \ge 8$	
	is statement is false since $2\sqrt{15} < 2\sqrt{16} = 8$. Thus we have a contradiction and pre the assumption that $\sqrt{5} + \sqrt{3} \ge 4$ must be false and so $\sqrt{5} + \sqrt{3} < 4$.	

Space for Personal Notes

<u>Sub-Section [2.2.2]</u>: Proofs involving Converse and Equivalent Statements

Qι	Question 4		
Wı	Write the converse of the following statements.		
a.	a. If it rains, the grass will be wet.		
	If the grass is wet, then it rains.		
b.	If a number is divisible by 2, then it is even.		
	If a number is even, then it is divisible by 2.		
c.	If a person is a teacher, then they enjoy teaching.		
	If a person enjoys teaching, then they are a teacher.		
Space for Personal Notes			

\sim	. •	_
Ou	estion	5

Prove the following statement: A number is odd, if and only if its square is odd.

 (\Longrightarrow) If a number n is odd, then n=2k+1 for some integer k.

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1,$$

which is odd.

 (\Leftarrow) If n^2 is odd, then it cannot be divisible by 2. This implies n cannot be divisible by 2 either, so n is odd.

Question 6

Prove the following statement: A four-digit number is divisible by 9, if and only if the sum of its digits is divisible by 9.

Let n have digits a, b, c, d from left to right.

$$n = 1000a + 100b + 10c + d$$

$$= a + b + c + d + 999a + 99b + 9c \\$$

$$= a + b + c + d + 9(111a + 11b + c)$$

Let
$$a+b+c+d=s$$
 and $111a+11b+c=t$, then

$$n = s + 9t$$

 (\Longrightarrow) The second term is a multiple of 9 so for n to be a multiple of 9 we must also have s be a multiple of nine.

 (\Leftarrow) s is a multiple of nine so

$$n = 9u + 9t$$

$$=9(u+t)$$

and so n is a multiple of nine.

<u>Sub-Section [2.2.3]</u>: Proofs involving the Universal and Existence Quantifiers

Question 7

Write the following statements in terms of the universal (\forall) and existential (\exists) quantifiers.

a. All integers are even.

 $\forall n \in \mathbb{Z}, n \text{ is even.}$

b. There exists a real number that is not a rational number.

 $\exists x \in \mathbb{R}, x \notin \mathbb{Q}.$

c. For all real numbers x, if x is even, then x^2 is even.

 $\forall x \in \mathbb{R}, x \text{ even } \implies x^2 \text{ is even}$

Negate the following statements involving universal and existential quantifiers.

a. $\forall n \in \mathbb{Z}, n^2 \geq 0$

 $\exists n \in \mathbb{Z}, n^2 < 0.$

b. $\exists x \in \mathbb{R}, x^2 = -1$

 $\forall x \in \mathbb{R}, x^2 \neq -1.$

c. $\forall x \in \mathbb{R}, x + 1 > x$

 $\exists x \in \mathbb{R}, x+1 \le x.$

Disprove the following statements by providing a counterexample.

a. Disprove that for all integers $n, n^2 + n + 1$ is always even.

Counterexample: Let n = 1. Then:

$$n^2 + n + 1 = 1^2 + 1 + 1 = 3$$
,

which is odd. Hence, the statement is false.

b. Disprove that there exists an integer n such that, $n^2 = -1$.

The square of any integer n is non-negative, so $n^2 = -1$ is impossible. Hence, the statement is false.

c. Disprove that for all real numbers x, x^3 is odd.

Counterexample: x = 2 then $x^3 = 8$ is even.

Sub-Section [2.2.4]: Telescoping Series and Proofs by Induction

Question 10

Simplify the following telescoping series using partial fraction decomposition and simplification.

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots + \frac{1}{n(n+1)}$$

Rewrite $\frac{1}{k(k+1)}$ using partial fractions:

$$\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}.$$

Substitute into the series:

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right).$$

This is a telescoping series, so most terms cancel:

$$\left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right).$$

Simplify to get:

$$\sum_{k=2}^n \frac{1}{k(k+1)} = \frac{1}{2} - \frac{1}{n+1}.$$

Prove the following statement by induction:

$$1 + 2 + 4 + 8 + \dots + 2^{n-1} = 2^n - 1$$
 for all integers $n \ge 1$.

Base case (n=1):

$$1 = 2^1 - 1 = 1$$
.

The base case holds.

Inductive step: Assume the formula is true for n = m, i.e.,

$$1+2+4+\cdots+2^{m-1}=2^m-1$$
.

For n = m + 1, consider:

$$1+2+4+\cdots+2^{m-1}+2^m$$
.

Using the induction hypothesis:

$$\begin{aligned} 1 + 2 + 4 + \dots + 2^{m-1} + 2^m &= (2^m - 1) + 2^m \\ &= 2 \cdot 2^m - 1 \end{aligned}$$

$$=2^{m+1}-1.$$

Thus, the formula holds for n = m + 1.

Conclusion: By induction, the statement is true for all $n \ge 1$.

Prove the following statement by induction:

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Base case (n=1):

$$1^3 = \left(\frac{1(1+1)}{2}\right)^2 = 1.$$

The base case holds.

Inductive step: Assume the formula is true for n = m, i.e.,

$$1^3 + 2^3 + \dots + m^3 = \left(\frac{m(m+1)}{2}\right)^2$$
.

For n = m + 1, we now add $(m + 1)^3$ to both sides:

$$1^{3} + 2^{3} + \dots + m^{3} + (m+1)^{3} = \left(\frac{m(m+1)}{2}\right)^{2} + (m+1)^{3}$$

$$= (m+1)^{2} \left(\frac{m^{2}}{4} + (m+1)\right)$$

$$= (m+1)^{2} \left(\frac{1}{4}(m+2)^{2}\right)$$

$$= \frac{(m+1)^{2}(m+2)^{2}}{4}$$

$$= \left(\frac{(m+1)(m+2)}{2}\right)^{2}$$

Thus, the formula holds for n=m+1. By induction, the statement is true for all $n \geq 1$.

Sub-Section: The 'Final Boss'

Question 13

a. Prove that $\sqrt{3}$ is irrational.

D 61 4 11 4	L
Proof by contradiction: Assume $\sqrt{3}$ is rational. Then, it can be written as $\sqrt{3} = \frac{p}{q}$, where $p, q \in \mathbb{Z}$, $q \neq 0$, and	
$\gcd(p,q)=1$. Squaring both sides: $3=\frac{p^2}{2},$	
$p^2 = 3q^2.$	
 This shows p^2 is divisible by 3. By the properties of integers, this implies p is divisible by 3. Let $p=3k$, where $k \in \mathbb{Z}$. Substituting $p=3k$ into $p^2=3q^2$:	

$$(3k)^2 = 3q^2,$$

 $9k^2 = 3q^2,$
 $q^2 = 3k^2.$

This shows q^2 is divisible by 3, and hence q is divisible by 3. Since both p and q are divisible by 3, this contradicts the assumption that $\gcd(p,q)=1$. Conclusion: The assumption that $\sqrt{3}$ is rational is false. Therefore, $\sqrt{3}$ is irrational.

b. Consider the statement:

 $2^{3n} - 3^n$ is divisible by 5 for any integer n greater than or equal to 1.

Write the statement without any English words using the universal and existence quantifiers.

 $\forall n \in \mathbb{N}, \exists k \in \mathbb{Z}, \ 2^{3n} - 3^n = 5k.$

c. Prove the statement from **part b.** using mathematical induction.

Base case (n = 1): For n = 1: $2^{3(1)} - 3^1 = 2^3 - 3,$ = 8 - 3,= 5.

Since 5 is divisible by 5, the base case holds. **Inductive step:** Assume the statement is true for n = k, i.e.,

 $2^{3k}-3^k=5m\quad\text{for some }m\in\mathbb{Z}.$

We need to prove the statement holds for n=k+1, i.e.,

 $2^{3(k+1)} - 3^{k+1}$ is divisible by 5.

We have that

$$\begin{aligned} 2^{3(k+1)} - 3^{k+1} &= (2^{3k} \cdot 8) - (3^k \cdot 3) \\ &= 8(2^{3k} - 3^k) + 5 \cdot 3^k \\ &= 8(5m) + 5 \cdot 3^k \\ &= 5(8m+1) \end{aligned}$$

which is divisible by 5. Hence by the POMI $2^{3n}-3^n$ is divisible by 5 for all $n\in\mathbb{N}$.

Section B: Supplementary Questions

Sub-Section [2.2.1]: Direct and Indirect Proofs

Question 14

Prove that all numbers of the form $n^3 - n$, where $n \in \mathbb{Z}$, are multiples of 6.

The expression is $n^3 - n$.

$$n^3 - n = n(n^2 - 1) = n(n - 1)(n + 1).$$

This represents the product of three consecutive integers.

One of these integers must be even, and another must be divisible by 3.

Therefore $n^3 - n$ is divisible by both 2 and 3 and thus it must be divisible by 6.

Question 15

Prove the following statement using a proof by contrapositive: If n^5 is odd, then n is odd.

We will prove the contrapositive: n is even $\implies n^5$ is even. Let n=2k where $k\in\mathbb{Z}$, then

$$n^5 = (2k)^5$$

= $32k^5$
= $2(16k^5)$
= $2m$

where $m \in \mathbb{Z}$ and so $n^5 = 2m$ is even.

Prove the following statement using a proof by contradiction: $\sqrt{5} + \sqrt{7} < 5$.

Suppose for a contradiction that $\sqrt{5} + \sqrt{7} \ge 5$. Then

$$(\sqrt{5}+\sqrt{7})^2 \ge 25$$

$$5 + 7 + 2\sqrt{35} \ge 25$$

$$2\sqrt{35} \ge 13$$

but this statement is false since $2\sqrt{35} < 2\sqrt{36} = 12$. Thus we have a contradiction and therefore the assumption that $\sqrt{5} + \sqrt{7} \ge 5$ must be false and so $\sqrt{5} + \sqrt{7} < 5$.

Question 17

Prove that for a, b > 0, we have $a + b \ge \left(\frac{1}{a} + \frac{1}{b}\right)^{-1}$.

Assume the statement is false. That is, suppose:

$$a+b<\left(\frac{1}{a}+\frac{1}{b}\right)^{-1}.$$

Let:

$$H = \frac{1}{a} + \frac{1}{b}.$$

Then the assumption becomes:

$$a+b<\frac{1}{H}$$

Multiply both sides by H > 0 (since a, b > 0):

$$H(a+b) < 1.$$

Now substituting $H = \frac{1}{a} + \frac{1}{b}$, we get:

$$\left(\frac{1}{a} + \frac{1}{b}\right)(a+b) < 1$$

$$b \quad a$$

$$\frac{b}{a} + \frac{a}{b} < 1$$

However, for a, b > 0, $d\frac{b}{a} + \frac{a}{b} \ge 0$ which contradicts $\frac{b}{a} + \frac{a}{b} < -1$. We have a contradiction.

The assumption is false. Therefore, $a + b \ge \left(\frac{1}{a} + \frac{1}{b}\right)^{-1}$ is true.

<u>Sub-Section [2.2.2]</u>: Proofs involving Converse and Equivalent Statements

Qι	Question 18		
Wı	Write the converse of the following statements.		
a.	If a person exercises regularly, they stay healthy.		
	If a person stays healthy, then they exercise regularly.		
b.	If a car is fuel-efficient, it saves money on gas.		
	If a car saves money on gas, then it is fuel-efficient.		
c.	If a student studies, they pass their exams.		
	If a student passes their exams, then they study.		
Sp	pace for Personal Notes		

CONTOUREDUCATION

Question 19

Suppose $n \in \mathbb{Z}$. Prove that n is odd, if and only if 3n + 1 is even.

(\Longrightarrow) n odd then 3n+1 is even. Let n=2k+1 for some $k\in\mathbb{Z}$, then 3n+1=3(2k+1)+1

$$= 6k + 4$$
$$= 2(3k + 2)$$
$$= 2m$$

where $m \in \mathbb{Z}$ and is therfore even. $(\Leftarrow) 3n + 1$ even then n odd

$$3n + 1 = 2k$$

 $3n = 2k - 1$
 $n = 2(k - n) - 1$
 $= 2m - 1$

where $m \in \mathbb{Z}$, therefore 3n + 1 is odd.

Question 20

Prove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.

 $(\Longrightarrow) \frac{n(n+1)}{2} = k$ for some $k \in \mathbb{N}$. Then

$$n(n+1) = 2k$$

n(n+1) is an even natural number and so n must be a natural number. (\iff) If n is a natural number then n(n+1) is the product of two consecutive natural numbers and is therefore even. So, for some $k \in \mathbb{Z}$,

$$\frac{n(n+1) = 2k}{\frac{n(n+1)}{2}} = k$$

therefore, $\frac{n(n+1)}{2}$ is a natural number.

Prove the following statement: For any integer n, n is divisible by 3, if and only if the sum of its digits is divisible by 3.

Let n have k digits, from left to right these digits are $a_k, a_{k-1}, \ldots, a_2, a_1$. Then we can write

$$n = a_1 + 10a_2 + 10^2 a_3 + \dots + 10^{k-1} a_k$$

$$= a_1 + a_2 + a_3 + \dots + a_k + (9a_2 + 99a_3 + \dots + (10^{k-1} - 1)a_k)$$

$$= a_1 + a_2 + a_3 + \dots + a_k + 3^2 \left(a_2 + 11a_3 + 111a_4 + \dots + \frac{10^{k-1} - 1}{9} a_k \right)$$

Let $a_1 + a_2 + a_3 + \dots + a_k = d$ and $a_2 + 11a_3 + 111a_4 + \dots + \frac{10^{k-1} - 1}{9}a_k = b$, then $n = d + 3^2b$

 (\Longrightarrow) The second term is a multiple of 3 so for n to be a multiple of 3 we must also have d be a multiple of three.

 (\Leftarrow) d is a multiple of three so

$$n = 3c + 3^2b = 3(c + 3b)$$

and so n is a multiple of three.

<u>Sub-Section [2.2.3]</u>: Proofs involving the Universal and Existence Quantifiers

Question 22

Write the following statements in terms of the universal (\forall) and existential (\exists) quantifiers.

a. All positive integers are greater than zero.

 $\forall n \in \mathbb{Z}^+, n > 0.$

b. There exists an integer that is a perfect square.

 $\exists n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n = k^2.$

c. For all real numbers x, if x > 0, then $\frac{1}{x} > 0$.

 $\forall x \in \mathbb{R}, x > 0 \implies \frac{1}{x} > 0.$

Negate the following statements involving universal and existential quantifiers.

a. $\forall n \in \mathbb{Z}, n + 0 = n$

 $\exists n \in \mathbb{Z}, n+0 \neq n.$

b. $\exists x \in \mathbb{R}, x^3 = 8$

 $\forall x \in \mathbb{R}, x^3 \neq 8.$

c. $\forall x \in \mathbb{R}, x^2 \geq 0$

 $\exists x \in \mathbb{R}, x^2 < 0.$

Disprove the following statements by providing a counterexample.

a. Disprove that for all integers $n, n^3 - n$ is always odd.

Counterexample: Let n = 2. Then:

$$n^3 - n = 2^3 - 2 = 8 - 2 = 6$$
,

which is even. Hence, the statement is false.

b. Disprove that there exists an integer n such that, 2n + 1 = 0.

The equation 2n+1=0 implies $n=-\frac{1}{2}$, which is not an integer. Hence, the statement is false.

c. Disprove that for all real numbers x, $x^2 + x$ is greater than 1.

Counterexample: Let x = -1. Then:

$$x^{2} + x = (-1)^{2} + (-1) = 1 - 1 = 0,$$

which is not greater than 1. Hence, the statement is false.

Prove that:

$$\forall a,b \in \mathbb{R}^+ \cup \{0\}, \frac{a+b}{2} \geq \sqrt{ab}$$

Suppose that $\frac{a+b}{2} < \sqrt{ab}$ then

$$\frac{a^2+2ab+b^2}{4} < ab$$

$$\frac{a^2-2ab+b^2}{4} < 0$$

$$\left(\frac{a-b}{2}\right)^2 < 0$$

which is a contradiction since and real number squared is ≥ 0 .

Sub-Section [2.2.4]: Telescoping Series and Proofs by Induction

Question 26

Simplify the following telescoping series using partial fraction decomposition and simplification.

$$\sum_{k=1}^{n+1} \frac{1}{(k+1)(k+2)} = \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)}$$

Rewrite $\frac{1}{(k+1)(k+2)}$ using partial fractions:

$$\frac{1}{(k+1)(k+2)} = \frac{1}{k+1} - \frac{1}{k+2}.$$

Substitute into the series:

$$\sum_{k=1}^{n+1} \frac{1}{(k+1)(k+2)} = \sum_{k=1}^{n+1} \left(\frac{1}{k+1} - \frac{1}{k+2} \right).$$

This is a telescoping series, so most terms cancel:

$$\left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \left(\frac{1}{n+2} - \frac{1}{n+3}\right).$$

Simplify to get:

$$\sum_{k=2}^n \frac{1}{k(k+1)} = \frac{1}{2} - \frac{1}{n+3}.$$

\sim		25
	uestion	Z'

Prove the following statement by induction:

$$2 + 4 + 6 + \cdots + 2n = n(n + 1)$$
 for all integers $n \ge 1$.

Let P(n) be the statement $2+4+6+\cdots+2n=n(n+1)$.

Base Case: P(1) = 2 = 1(1+1) = 2 holds.

Assume that P(k) holds for some $k \in \mathbb{N}$. Then,

$$2+4+6+\cdots+2k+2(k+1) = k(k+1)+2(k+1)$$

= $(k+1)(k+2)$

which is the statement P(k+1). Therefore by the POMI the statement P(n) holds for all integers $n \ge 1$.

Prove the following statement by induction:

$$a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^{n}-1)}{r-1}$$
 for all integers $n \ge 1$.

Let P(n) be the statement $a + ar + ar^2 + \cdots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$.

Base Case: $P(1)=a=\frac{a(r-1)}{r-1}=a$ which is true. Assume that P(k) holds for some $k\in\mathbb{N}$. Then we have

$$a + ar + ar^{2} + \dots + ar^{k-1} + ar^{k} = \frac{a(r^{k} - 1)}{r - 1} + ar^{k}$$

$$= \frac{a(r^{k} - 1) + ar^{k}(r - 1)}{r - 1}$$

$$= \frac{a(r^{k} - 1) + ar^{k+1} - ar^{k}}{r - 1}$$

$$= \frac{-a + ar^{k+1}}{r - 1}$$

$$= \frac{a(r^{k+1} - 1)}{r - 1}$$

so the statement P(k+1) holds. Therefore, by the POMI the statement P(n) is true for

Prove the following statement by induction:

$$a + (a + d) + (a + 2d) + \dots + (a + (n - 1)d) = \frac{n}{2}(2a + (n - 1)d)$$
, for all integers $n \ge 1$.

Let P(n) be the statement $a+(a+d)+(a+2d)+\cdots+(a+(n-1)d)=\frac{n}{2}\left(2a+(n-1)d\right)$.

Base Case: $P(1)=a=\frac{1}{2}(2a)=a$ which is true. Assume that P(k) hold for some $k\in\mathbb{N}$. Then we have

$$\begin{aligned} a + (a + d) + (a + 2d) + \dots + (a + (k - 1)d) + (a + kd) &= \frac{k}{2} \left(2a + (k - 1)d \right) + a + kd \\ &= ak + \frac{k}{2} (kd - d) + a + kd \\ &= (k + 1)a + \frac{k}{2} (kd) + \frac{1}{2} kd \\ &= \frac{k + 1}{2} (2a) + \frac{1}{2} kd(k + 1) \\ &= \frac{k + 1}{2} (2a + kd) \end{aligned}$$

which is equal to P(k+1). Therefore by the POMI the statement P(n) is true for all

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

