

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs II [2.2]

Homework

Homework Outline:

Compulsory Questions	Pg 2-Pg 13
Supplementary Questions	Pg 14-Pg 26

Section A: Compulsory Questions

<u>Sub-Section [2.2.1]</u>: Direct and Indirect Proofs

Questi		
Prove t	ne following statement using a direct proof: The sum of two even integers is always even.	
		(
uestic	on 2	
		١
	on 2 ne following statement using a proof by contrapositive: If n^3 is even, then n is even.	J
		J
Duestic		

Question 3		
rove the following stateme	ent using a proof by contradiction: $\sqrt{5} + \sqrt{3} < 4$	•
pace for Personal Notes	;	

<u>Sub-Section [2.2.2]</u>: Proofs involving Converse and Equivalent Statements

Qu	estion 4	<u>ر</u>
Wr	ite the converse of the following statements.	
a.	If it rains, the grass will be wet.	
	·	
b.	If a number is divisible by 2, then it is even.	
c.	If a person is a teacher, then they enjoy teaching.	
	·	
		IJ
Sp	ace for Personal Notes	

Question 5		
Prove the fo	ollowing statement: A number is odd, if and only if its square is odd.	
		44
Question 6		
Prove the forby 9.	ollowing statement: A four-digit number is divisible by 9, if and only if the sum of its digits is divis	sible
Space for I	Personal Notes	

<u>Sub-Section [2.2.3]</u>: Proofs involving the Universal and Existence Quantifiers

Question 7			
Write the following statements in terms of the universal (\forall) and existential (\exists) quantifiers.			
a. All integers are even.			
b. There exists a real number that is not a rational number.			
c. For all real numbers x , if x is even, then x^2 is even.			
Space for Personal Notes			

Question 8

Negate the following statements involving universal and existential quantifiers.

a. $\forall n \in \mathbb{Z}, n^2 \geq 0$

b. $\exists x \in \mathbb{R}, x^2 = -1$

c. $\forall x \in \mathbb{R}, x + 1 > x$

Space for Personal Notes

7

Question 9	المراوا
Disprove the following statements by providing a counterexample.	
a. Disprove that for all integers $n, n^2 + n + 1$ is always even.	
b. Disprove that there exists an integer n such that, $n^2 = -1$.	
c. Disprove that for all real numbers x, x^3 is odd.	

Sub-Section [2.2.4]: Telescoping Series and Proofs by Induction

Question	1	(

Simplify the following telescoping series using partial fraction decomposition and simplification.

$$\sum_{k=2}^{n} \frac{1}{k(k+1)} = \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots + \frac{1}{n(n+1)}$$

0	111
Question	L

Prove the following statement by induction:

$$1 + 2 + 4 + 8 + \dots + 2^{n-1} = 2^n - 1$$
 for all integers $n \ge 1$.

\sim		
()11	estion	-10

Prove the following statement by induction:

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Sub-Section: The 'Final Boss'

Qu	testion 13
۱.	Prove that $\sqrt{3}$ is irrational.
b.	Consider the statement:
	$2^{3n} - 3^n$ is divisible by 5 for any integer n greater than or equal to 1.
	Write the statement without any English words using the universal and existence quantifiers.

e Prox	re the statement from part b. using mathematical induction.
C. F10\	e the statement from part b. using mathematical induction.
Space 1	or Personal Notes

Section B: Supplementary Questions

<u>Sub-Section [2.2.1]</u>: Direct and Indirect Proofs

ove that all surely	ro of the form -3	m whom a C	7 oro multiplac of	. 6		
ove that all number	is of the form n^2	$-n$, where $n \in$	\mathbb{Z} , are multiples of	0.		
						_
						_
						_
						_
						_
						_
uestion 15						
	totomont voing o	muc of by control	ocitiva If m ⁵ is ada	d than m is odd		
	statement using a	proof by contrap	positive: If n^5 is odd	\mathbf{d} , then n is odd.	-	
			positive: If n^5 is odd			
						- - - -

Question 16		
Prove the following statement using a proof by contradiction: $\sqrt{5} + \sqrt{7} < 5$.		

Question	17

e that for a	a, b > 0, we	have $a + b$	$\geq \left(\frac{1}{a} + \frac{1}{b}\right)^{-}$	·1		

<u>Sub-Section [2.2.2]</u>: Proofs involving Converse and Equivalent Statements

Qu	estion 18	
Wı	ite the converse of the following statements.	
a.	If a person exercises regularly, they stay healthy.	
		-
		-
		-
h	If a car is fuel-efficient, it saves money on gas.	
ν.	if a car is raci criterion, it suves money on gas.	
		_
		_
c.	If a student studies, they pass their exams.	
		-
		-
		-
5.0	ace for Personal Notes	
3µ	ace for Fersolidi Notes	

Question 19				
Suppose $n \in \mathbb{Z}$. Prove	that n is odd, if and only if $3n$	+ 1 is even.		
				111
				444
Question 20				ונע
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if n is a	a natural number.	
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if n is ϵ	a natural number.	
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if n is a	a natural number.	<i>))))</i>
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if n is a	a natural number.	<i>))))</i>
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if n is a	a natural number.	<i>))))</i>
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if n is a	a natural number.	<i>))))</i>
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if <i>n</i> is a	a natural number.	
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if <i>n</i> is a	a natural number.	
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if <i>n</i> is a	a natural number.	
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if <i>n</i> is a	a natural number.	
	atement: $\frac{n(n+1)}{2}$ is a natural nu	mber, if and only if <i>n</i> is a	a natural number.	
Prove the following st		mber, if and only if <i>n</i> is a	a natural number.	
		mber, if and only if <i>n</i> is a	a natural number.	

17

pace for Personal Notes	Question 21		
		nt: For any integer n , n is divisible by 3, if and only if the sum of its digits is d	ivisib
	y 3.		
			
			<u>.</u>
pace for Personal Notes			
pace for Personal Notes			
pace for Personal Notes			
pace for Personal Notes			
pace for Personal Notes			
pace for Personal Notes			
	pace for Personal Notes		

<u>Sub-Section [2.2.3]</u>: Proofs involving the Universal and Existence Quantifiers

Qu	nestion 22				
Write the following statements in terms of the universal (\forall) and existential (\exists) quantifiers.					
a.	All positive integers are greater than zero.				
b.	There exists an integer that is a perfect square.				
ν.	Thore chists an integer that is a period square.				
c.	For all real numbers x , if $x > 0$, then $\frac{1}{x} > 0$.				
Sn	asce for Personal Notes				

CONTOUREDUCATION

Question 23

Negate the following statements involving universal and existential quantifiers.

a. $\forall n \in \mathbb{Z}, n + 0 = n$

b. $\exists x \in \mathbb{R}, x^3 = 8$

 $\mathbf{c.} \quad \forall x \in \mathbb{R} \,, x^2 \, \geq \, 0$

Que	estion 24	Ú
Disp	prove the following statements by providing a counterexample.	
a. :	Disprove that for all integers $n, n^3 - n$ is always odd.	
		-
		-
b. 3	Disprove that there exists an integer n such that, $2n + 1 = 0$.	
		-
		-
c.	Disprove that for all real numbers $x, x^2 + x$ is greater than 1.	
		-
		-
Spa	nce for Personal Notes	

SM12 [2.2] - Proofs II - Homework

Question	25
Oucsuon	40

Prove that:

$$\forall a, b \in \mathbb{R}^+ \cup \{0\}, \frac{a+b}{2} \ge \sqrt{ab}$$

Sub-Section [2.2.4]: Telescoping Series and Proofs by Induction

Question 26

Simplify the following telescoping series using partial fraction decomposition and simplification.

$$\sum_{k=1}^{n+1} \frac{1}{(k+1)(k+2)} = \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)}$$

Ouest	ion	2
Quesi	HOL	4

Prove the following statement by induction:

$$2 + 4 + 6 + \cdots + 2n = n(n + 1)$$
 for all integers $n \ge 1$.

 	 		

_	 	 		

Question 28

Prove the following statement by induction:

$$a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^{n}-1)}{r-1}$$
 for all integers $n \ge 1$.

Question 29

Prove the following statement by induction:

$$a + (a + d) + (a + 2d) + \dots + (a + (n - 1)d) = \frac{n}{2}(2a + (n - 1)d)$$
, for all integers $n \ge 1$.

_				
_			 	
-	 			

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

