

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs I [2.1]

Rei - Contacts

Workbook

whatsapp/ 0490 198 272

o email Pei @ Contowedu artion.com.au

Outline:

Sets and Notations

Rationalising the Denominator

Proving Number Sets

Pg 22-37

Statements

- Operation of Statements
- De Morgans's Law

Pg 15-21

Pg 2-14

Conditional Statements

- Even and Odd Numbers
- Divisibility
- Rational Numbers

Learning Objectives:

- SM12 [2.1.1] Number sets
- SM12 [2.1.2] Statements and operations
- □ SM12 [2.1.3] Proving number sets

Section A: Sets and Notations

Context

- We will learn about proofs involving number sets later in this workbook.
- We need to first revise/preview the different number sets encountered in Specialist Mathematics.

What is a set?

<u>Set</u>

{value₁, value₂, ...

A set is simply a collection of multiple values.

Let's look at some questions together!

Question 1 Walkthrough.

Interpret the following set and simplify:

$$\{x | x^2 = 4\}$$

$$x^2 = 4$$

$$x = 12$$

$$\{-2, 2\}$$

Your Turn!

Question 2

Interpret the following set and simplify:

$$(x-1)(x-3)$$

$${x: x^2 - 4x + 3 = 0}$$

Question 3 Additional Question.

Interpret the following set and simplify:

$$\{x:|x|=8\}$$

 $1 < x < 3 \longrightarrow x \in (1,3]$ **Interval Notation**

Between a and b.

(a,b) > <

Between a and b inclusive.

The interval of real numbers between a and b inclusive, but excluding c.

[a,b] $\{c\}$

Let's look at some questions together!

Question 4 Walkthrough.

Express each of the following subsets of *R* in interval notation.

 $\mathbf{a.} \quad \left\{ x : -\frac{\pi}{2} < x \le 3\pi \right\}$

$$\chi \in \left(-\frac{\tau}{2}, 3\pi\right]$$

c. $\{x: x < 3\} \bigcap \{x: x \neq -2\}$

26(-0,3)\ 2-23

Your Turn!

Question 5

Express each of the following subsets of *R* in interval notation.

a. $\{x: x > 5\}$

b. $\{x: -1 \le x < 6\} \cap \{x \ne 5\}$

c. $\{x: x < 4\} \cap \{x: x \neq 0\}$

Question 6 Additional Question.

Express each of the following subsets of *R* in interval notation.

- **a.** $\{x: x < 3\} \cap \{x: x \ge 2\}$
- **b.** $\{x: x^2 \le 4\} \cap \{x: x \ne 2\}$

How could we combine two sets?

Operation of Sets

Negation: Everything **but**

 $\neg A \text{ or } A'$

Intersection

 $A \cap B \longrightarrow and$

Union

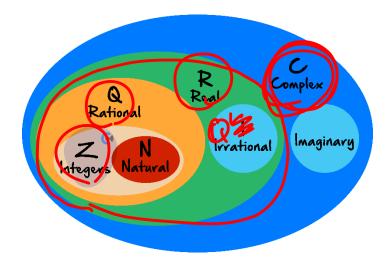
 $A \cup B \leftarrow OY$

- Difference
- Product

 $(A \times B) = \{(a, b), a \in A, b \in B\}$

A quick recap of number sets!

Number Sets



 $N \subseteq Z \subseteq Q \subseteq R \subseteq C$

Naturals (N)

$$N = (12, 3 \cdots$$

Integers (Z)

Rationals (Q)

$$Q = \frac{a}{b} = Z$$

Real (R)

Complex (C)

Let's look at some questions together!

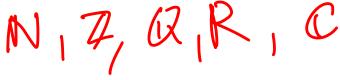
Question 7 Walkthrough.

For the following numbers, state all the number sets they are an element of.

a. $\sqrt{3}$

R (Q') C

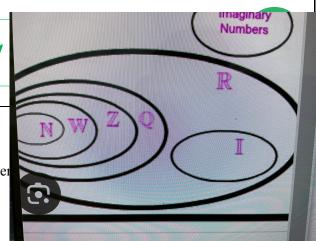
c. 3



- N is the set of Natural Number (12,3.--)

 Z is the set of Meger (whole number)
- ightharpoonup Q is the set of $\underline{Vartonal}$
- R is the set of real number (Number line)
- C is the set of COMPLEX (ren) GP imaginary)

Your Turn!



Question 8

For the following numbers, state all the number sets they are an element

a. -4

b. $\frac{5}{12}$

c. -4 + i

Question 9 Additional Question.	
For the following numbers, state all the number sets they are an element of.	
a. <i>e</i>	
b. 10	
c. i	

Sub-Section: Rationalising the Denominator

Context

Take a look at the fraction below:

- How can we express this in the form of $\frac{a+\sqrt{b}}{c}$?
- VCAA loves these types of questions!

EG: 2022 VCAA Specialist Exam 1.

The graph of y = f(x) for $x \in \left[-\frac{\pi}{24}, \frac{\pi}{48} \right]$ is rotated about the *x*-axis to form a solid of revolution.

Find the volume of this solid. Give your answer in the form $\frac{\left(a-\sqrt{b}\right)\pi}{c}$, where $a,b,c\in\mathbb{Z}$. 3 marks

Definition

Rationalising the Denominator

Aim: To remove surds in the denominator.

$$\frac{1}{a - \sqrt{b}} = \frac{1}{a \bigcirc \sqrt{b}} \times \frac{a + \sqrt{b}}{a \bigcirc \sqrt{b}}$$

Multiply the top and bottom by the conjugate of the denominator.

<u>Discussion:</u> How does this work? What does $(a-\sqrt{b}) \times (a+\sqrt{b})$ equal to?

Difference of perfect

Let's look at some questions together!

Question 10 Walkthrough.

Rationalise the denominator for the following:

$$\frac{1}{2+\sqrt{7}}$$
 \times $\frac{2-\sqrt{7}}{2-\sqrt{7}}$

$$= \frac{2 - \sqrt{7}}{(2\sqrt{7})(2\sqrt{7})}$$

$$= \frac{2 - \sqrt{7}}{2 - \sqrt{7}}$$

$$= \frac{2 - \sqrt{7}}{4 - 7} = \frac{2 - \sqrt{7}}{-3}$$

Recall!

Active Recall

?

To rationalise the denominator, we multiply the numerator and denominator by

and expand

Your Turn!

Question 11

Rationalise the denominator for the following.

a.
$$\frac{1+\sqrt{2}}{5-\sqrt{2}} = \frac{1+\sqrt{2}}{5-\sqrt{2}} \times \frac{5+\sqrt{2}}{5+\sqrt{2}} = \frac{(1+\sqrt{2})(5+\sqrt{2})}{(5-\sqrt{2})(5+\sqrt{2})} = \frac{5+6\sqrt{2}+2}{25-2} = \frac{7+6\sqrt{2}}{23}$$

b.
$$\frac{5-\sqrt{6}}{7+\sqrt{6}} = \frac{5-\sqrt{6}}{7+\sqrt{6}} \times \frac{7-\sqrt{6}}{7-\sqrt{6}} = \frac{35-(2\sqrt{6}+\sqrt{6})}{49-6} = \frac{41-12\sqrt{6}}{43}$$

Question 12 Additional Question.

Rationalise the denominator for the following. Write your answer in the form $\frac{a+b\sqrt{c}}{d}$.

$$\frac{3+\sqrt{2}}{6-\sqrt{2}}$$

TIP: We will need this skill again when we look at complex numbers later!

- A set is a collection of multiple values.
- When using interval notation, square brackets are used to include the endpoints and round brackets are used to exclude the endpoints.
- Common number sets that are encountered in Specialist Mathematics are N (positive whole numbers), Z (integers), Q (rational numbers), R (real numbers) and C (complex numbers).
- To rationalise a fraction with a surd in the denominator, we can first multiply the numerator and denominator by the conjugate of the denominator and simplify by expanding.

Space for Personal Notes

Section B: Statements

Sub-Section: Operation of Statements

What is a statement?

Context

Before we start looking at proof questions, we need to learn about statements.

Statements and its Operations

Statements can be very general.

Negation: Everything **but**

A = Doing SM12

B=Doing MMLZ

A NOT

Not doing SM12

Intersection

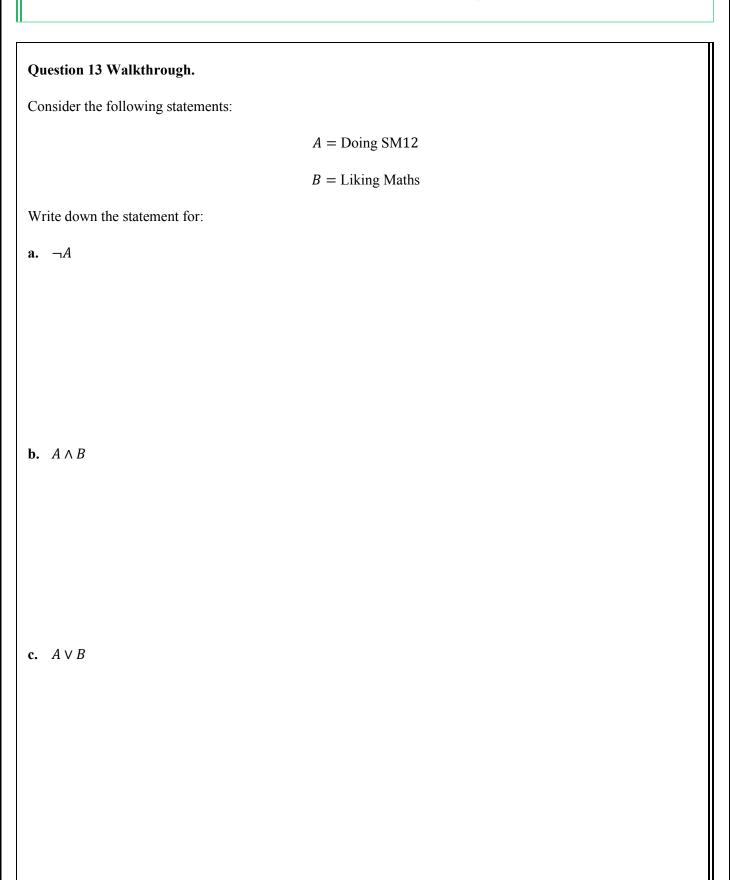
Union

ANB doing SM12 & MM12

ANB doing SM12 of MM12

NOTE: We can use U notation instead of V.

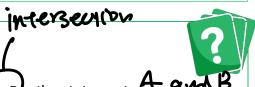
Let's look at some questions together!



Recall!

Active Recall

negation



For two statements A and B $\neg A$ is the statement $A \land B$ is the statement $A \land B$ is the statement $A \land B$.

(Mion

Your Turn!

Question 14

Consider the following statements:

A =Travelling to Argentina

B =Learning Spanish

Write down the statement for:

Not trav. TO A.

b. $A \wedge B$

Trov to A & learn S.

Trav to A OF Not leaving 5

Question 15 Additional Question.

Consider the following statements:

 $A = \text{Taking Accounting } \frac{1}{2}$

 $B = \text{Taking Accounting } \frac{3}{4}$

Write down the statement for:

a. ¬*A*

b. $A \wedge \neg B$

c. $A \lor B$

Sub-Section: De Morgans's Law

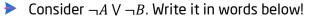
Context

Exploration: De Morgan's Law

Consider the statements:

B = I Like Strawberry

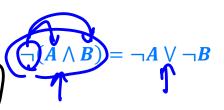
Consider $\neg (A \land B)$. White it in words below!



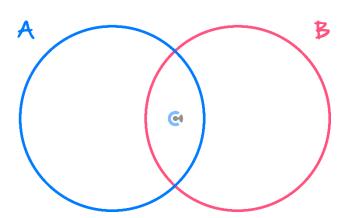
Not like anocalone

not liking

Hence, we can say,

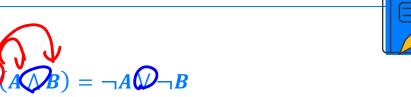


$$\neg (A \lor B) = \neg A \land \neg B$$



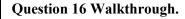
NOTE: If you expand or factorise negation, the union and intersection flips!

De Morgan's Law



$$\neg(A \lor B) = \neg A \land \neg B$$

Let's look at some questions together!



Using De Morgan's Law, write down the statement below in a different way.

Negation of "Sam doesn't like SM or MM."

A: Sam doesn't like som
B: Sam doesn't like mon

7(AVB) = 7A N 7B Sam IIKES SN and Snmlikes

Recall!

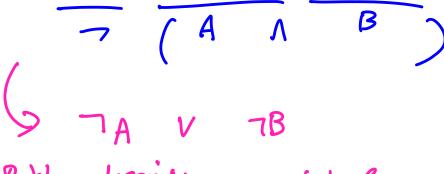
Active Recall

Your Turn!

Question 17

Using De Morgan's Law, write down the statement below in a different way.

Negation of "Bobby has an iPhone but doesn't have a Mac."



Bobby doesn't have an iphore

Question 18 Additional Question.

bolly has a mac

Using De Morgan's Law, write down the statement below in a different way.

Negation of "Bobby can speak Portuguese and English."

- We can do the following operations involving statements: $\neg A$ meaning "not A," $A \land B$ meaning "A or B," and $A \lor B$, meaning "A and B."
- ✓ De Morgan's Laws state that $\neg(A \land B) = \neg A \lor \neg B$ and $\neg(A \lor B) = \neg A \land \neg B$.
- ☑ We notice that in De Morgan's Laws, the intersections and unions flip.

Section C: Proving Number Sets

Sub-Section: Conditional Statements

Context

- Conditional statements will be the most important for us when doing a question involving proof.
- Check out this question from the sample Specialist Mathematics 3/4 exam. The "If ..., then ..." statement is an example of a conditional statement.

Question 1

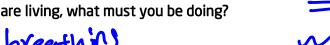
Consider the following statement.

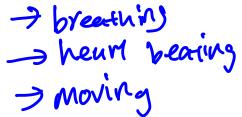
'For all integers n, if n^2 is even, then n is even.'

Which one of the following is the contrapositive of this statement?

- For all integers n, if n^2 is odd, then n is odd.
- There exists an integer n such that n^2 is even and n is odd. В.
- There exists an integer n such that n is even and n^2 is odd.
- For all integers n, if n is odd, then n^2 is odd. D.
- For all integers n, if n is even, then n^2 is even. E.

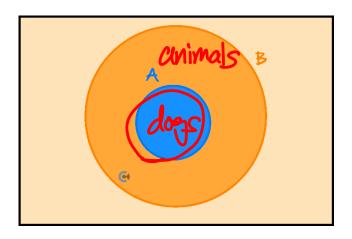
Discussion: If you are living, what must you be doing?

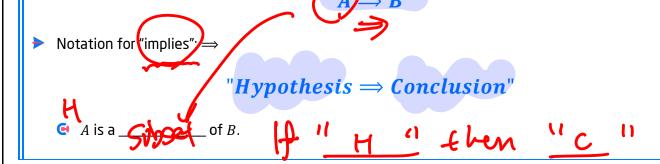




NOTE: Visually, imply is the same as "subset".

Conditional Statements



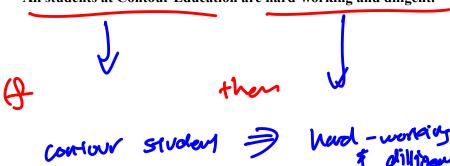


Let's look at some questions together!

Question 19 Walkthrough.

Write a conditional statement from each of the following:

All students at Contour Education are hard-working and diligent.



NOTE: Order Matters!

Recall!

Active Recall: What is the relationship between the hypothesis and the conclusion?

Your Turn!

Question 20

Write a conditional statement from each of the following:

Students doing SM12 are all brave.

SM12 Students

oran

Question 21 Additional Question.

Write a conditional statement from each of the following:

You must do well enough in English in order to study Law at University.

Sub-Section: Even and Odd Numbers

Context

Exam 1 of Specialist Mathematics 3/4 usually has a proof question. Here is a question from the sample exam. After this workbook, you will be proving the statement!

Question 4 (3 marks)

Use proof by contradiction to prove that if n is odd, where $n \in \mathbb{N}$, then $n^3 + 1$ is even.

Exploration: Even and Odd Numbers

Write out a few even numbers:

We can rewrite them in the following way:

241 242 243

Do you notice a pattern?

Even = 24 , fe7

Now write out a few odd numbers:

一1,3,51子

- We can rewrite them in the following way:
- There is a similar pattern for odd numbers!

Jodd = QK+1 KEZ

ONTOUREDUCATION

Proofs involving Even and Odd numbers

Simply show:

$$Even = 2k, k \in \mathbb{Z}$$

$$Odd = 2k + 1, k \in \mathbb{Z}$$

Let's look at some questions together!

Question 22 Walkthrough.

Prove that if n is even then n^2 is also even.

Since n is even

Let n=2k | $k\in\mathbb{Z}$ $n^2=(2k)^2=4k^2=2x(2k^2)$ $2k^2$ is an imager

Hence $2x(2k^2)$ is even

NOTE: Start with the hypothesis by saying "let..."

Recall!

Active Recall: Odd and Even Numbers

- An even number can be written in the form
 An odd number can be written in the form
- It is important to include $k \in \mathbb{Z}$.

Your Turn!

Ouestion 23

Prove that if n is odd, then n^2 is also odd.

n is an odd number

Let
$$n = 2k+1$$
, $k = 7$
 $h^2 = (2k+1)^2$
 $= 4k^2+4k+1$
 $= 9(2k^2+2k)+1$
 $2k^2+2k \in 7$

Question 24 Additional Question.

Prove that if two numbers a and b are odd, then their sum is even.

$$a = 2K+1 | K \in \mathbb{Z}$$

$$b = 2m+1 | m \in \mathbb{Z}$$

$$a+b = 2K+1 + 2m+1$$

$$= 2K+2m+2$$

$$= 2(K+m+1)$$

$$= 2(K+m+1)$$

1. ptb is ever

Sub-Section: Divisibility

Context

Even numbers are divisible by 2. How about divisibility by other numbers? Check out this divisibility question from the sample exam.

Question 3 (4 marks)

Prove by mathematical induction that the number $9^n - 5^n$ is divisible by 4 for all $n \in \mathbb{N}$.

Exploration:

Write out a few numbers that are divisible by 3.

Notice that these numbers can be written in the form:

3x<u>3</u> 3xg 3x10

Therefore, any number that is divisible by 3 can be written in the form:

$$n = 3 + 1 + = 2$$

ook for

Let's look at some questions together!

Question 25 Walkthrough.

Prove that if n is a multiple of 3, n^2 must be divisible by 9

N=3K, FEZ N2=(3K)2=9E2

Kence v2 is divisible by 9

NOTE: For a number n to be divisible by a, n MUST be an integer multiple of a, that is you MUST be able to write $n = a \times INTEGER$

Recall!

Active Recall

Your Turn!

Question 26

Prove the following statement: If n is a multiple of 4, n^2 must be divisible by 8.

$$N=4K, KEZ$$

$$N^{2}=(4t)^{2}=(6t)^{2}$$

$$=8x(2t)^{2}$$

$$=2x^{2}G^{2}$$

26267 . N2 is divisible by 8

Question 27 Additional Question.

Prove the following statements:

a. If n is a multiple of 3, then $n^2 + 10n + 9$ is divisible by

b. If n is a multiple of 3, then $n^2 - 1$ is not divisible by 3.

c. If n is divisible by 3 and m is divisible by 10, then 5n + 7m is divisible by 5.

<u>Divisibility Proof - Splitting by Cases</u>

For divisibility of 2, we split the cases into _____

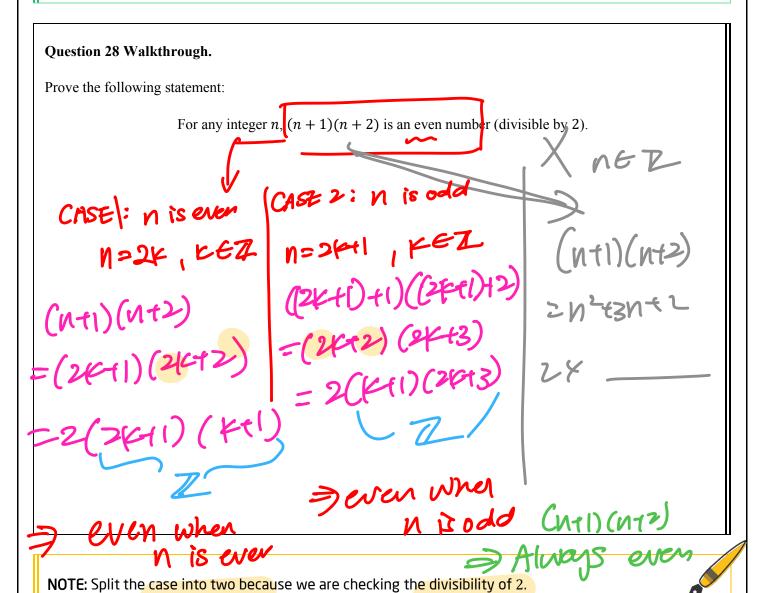
any number: Case 1: 2k 2k+1

 \blacktriangleright For divisibility of n we split the cases into ______.

Case 1: nk, nk + 1, nk + 2 \cdots nk + (n-1)

any number: 3: 3K/3K+1,3

Let's look at some questions together!



Recall!

Active Recall: Splitting by cases

For a proof question where we want to show something is divisible by 3, we can split it into three cases where __

Your Turn!

Question 29

Prove the following statement: For any integer n(n+1)(n+2)n divisible by 3.

3x(3142)(141)(3141) - 3x (141)(3144)(3

Always disible by 3

Prove the following statement below:

Prove that if $n = m^2$ for some integer m, then n = 4k or n = 4k + 1 for some integer k.

Sub-Section: Rational Numbers

Proving Rationals (Q)

Write out a few rational numbers:

Write out a few numbers that are not rational numbers!

Not all fractions are rational numbers! What is the general form for a rational number?

$$n = \frac{a}{b}$$

Let's look at some questions together!

Question 31 Walkthrough.

Prove the following conditional statement:

If x is a rational number, $\frac{x+2}{x+3}$ is also a rational number.

$$x=\frac{a}{b}$$
, aez , $bez[803]$
 $x=\frac{a}{b}$, aez , $bez[803]$

atthe EZ atthe GZ 1903 Hence, ZTZ is rational zts

Recall!

Active Recall: Rational numbers

A rational number can be written in the form:

0EZ beZ\303

Question 32

Prove the following conditional statement:

If
$$x$$
 and y are rational numbers, $\frac{xy}{x+y}$ s also a rational number.

Let $x = \frac{9}{5}$, $y = \frac{2}{5}$, and $y = \frac{2}{5}$

Question 33 Additional Question.

Prove the following statement below:

If x and y are rational numbers and y is not equal to zero, then x/y is also a rational number.

- ✓ Adding, subtracting and multiplying integers result in integers.
- lacktriangledown An even number can be expressed as 2k where $k \in \mathbb{Z}$ and an odd number can be expressed as 2k+1 where $k \in \mathbb{Z}$.
- If n is divisible by a, then $n = a \times k$ where $k \in \mathbb{Z}$, meaning $n = a \times \text{INTEGER}$.
- ☑ Where helpful, we can approach a proof involving divisibility by considering different cases.

Contour Check

Learning Objective: [2.1.1] - Number sets

Key Takeaways

- A set is a collection of multiple values.
- When using interval notation, square brackets are used to include the endpoints and round brackets are used to exclude the endpoints.
- Common number sets that are encountered in Specialist Mathematics are N (positive whole numbers), Z (integers), Q (rational numbers), R (real numbers) and C (complex numbers).
- To rationalise a fraction with a surd in the denominator, we can first multiply the numerator and denominator by the conjugate of the denominator and simplify by expanding.

Learning Objective: [2.1.2] - Statements and operations

- We can do the following operations involving statements: $\neg A$ meaning "not A", $A \land B$ meaning "A or B", and $A \lor B$, meaning "A and B".
- De Morgan's Laws state that $\neg(A \land B) = \neg A \lor \neg B$ and $\neg(A \lor B) = \neg A \land \neg B$.
- We notice that in De Morgan's Laws, the intersection/union flips.

Learning Objective: [2.1.3] - Proving number sets

- Adding, subtracting and multiplying integers result in integers.
- An even number can be expressed as 2k where $k \in \mathbb{Z}$ and an odd number can be expressed as 2k + 1 where $k \in \mathbb{Z}$.
- If n is divisible by a, then $n = a \times k$ where $k \in \mathbb{Z}$, meaning $n = a \times \text{INTEGER}$.
- ☐ Where helpful, we can approach a proof involving divisibility by considering different cases.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

