

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs I [2.1]

Workbook

Outline:

Sets and Notations

Pg 2-14

Rationalising the Denominator

Operation of Statements

Proving Number Sets

Pg 22-37

- **Statements**
- Pg 15-21
- De Morgans's Law

- Conditional Statements
 - Even and Odd Numbers
 - Divisibility
 - Rational Numbers

Learning Objectives:

- SM12 [2.1.1] Number sets
- □ SM12 [2.1.2] Statements and operations
- □ SM12 [2.1.3] Proving number sets

Section A: Sets and Notations

Context

- We will learn about proofs involving number sets later in this workbook.
- We need to first revise/preview the different number sets encountered in Specialist Mathematics.

What is a set?

<u>Set</u>

$$\{value_1, value_2, \dots\}$$

A set is simply a collection of multiple values.

A

Let's look at some questions together!

Question 1 Walkthrough.

Interpret the following set and simplify:

$$\{x|x^2=4\}$$

Your Turn!

Question 2

Interpret the following set and simplify:

$$\{x: x^2 - 4x + 3 = 0\}$$

Question 3 Additional Question.

Interpret the following set and simplify:

$${x: |x| = 8}$$

CONTOUREDUCATION

Definition

Interval Notation

 \blacktriangleright Between a and b.

(a, b)

 \blacktriangleright Between a and b inclusive.

[a, b]

 \blacktriangleright The interval of real numbers between a and b inclusive, but excluding c.

 $[a,b]\setminus\{c\}$

A

Let's look at some questions together!

Question 4 Walkthrough.

Express each of the following subsets of R in interval notation.

$$\mathbf{a.} \ \left\{ x: -\frac{\pi}{2} < x \le 3\pi \right\}$$

b.
$$\{x: x \neq -2\}$$

c.
$$\{x: x < 3\} \cap \{x: x \neq -2\}$$

Your Turn!

Question 5

Express each of the following subsets of R in interval notation.

- **a.** $\{x: x > 5\}$
- **b.** $\{x: -1 \le x < 6\} \cap \{x \ne 5\}$
- **c.** $\{x: x < 4\} \cap \{x: x \neq 0\}$

Question 6 Additional Question.

Express each of the following subsets of R in interval notation.

- **a.** $\{x: x < 3\} \cap \{x: x \ge 2\}$
- **b.** $\{x: x^2 \le 4\} \cap \{x: x \ne 2\}$

How could we combine two sets?

Operation of Sets

Negation: Everything **but**

 $\neg A \text{ or } A'$

Intersection

 $A \cap B$

Union

 $A \cup B$

Difference

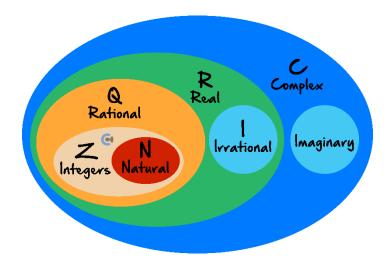
 $A \setminus B$

Product

$$A \times B = \{(a, b), a \in A, b \in B\}$$

A quick recap of number sets!

Number Sets



 $N \subseteq Z \subseteq Q \subseteq R \subseteq C$

➤ Naturals (N)

$$N =$$

► Integers (Z)

$$Z =$$

➤ Rationals (Q)

$$Q =$$

➤ Real (R)

$$R =$$

▶ Complex (*C*)

$$C =$$

Let's look at some questions together!

Question 7 Walkthrough.

For the following numbers, state all the number sets they are an element of.

a. $\sqrt{3}$

b. $\frac{1}{3}$

c. 3

d. 3 + i

R

Recall!

Active Recall: Determining Number Sets

?

- N is the set of ______.
- Z is the set of ______.
- Q is the set of ______.
- R is the set of ______.
- **▶** *C* is the set of ______.

Your Turn!

Question 8

For the following numbers, state all the number sets they are an element of.

- **a.** -4
- **b.** $\frac{5}{12}$
- c. -4 + i

Question 9 Additional Question.		
For the following numbers, state all the number sets they are an element of.		
a. <i>e</i>		
b. 10		
c. <i>i</i>		

Sub-Section: Rationalising the Denominator

Context

Take a look at the fraction below:

$$\frac{\sqrt{2}+3}{\sqrt{2}-1}$$

- How can we express this in the form of $\frac{a+\sqrt{b}}{c}$?
- VCAA loves these types of questions!
- EG: 2022 VCAA Specialist Exam 1.

The graph of y = f(x) for $x \in \left[-\frac{\pi}{24}, \frac{\pi}{48} \right]$ is rotated about the *x*-axis to form a solid of revolution.

Find the volume of this solid. Give your answer in the form $\frac{\left(a-\sqrt{b}\right)\pi}{c}$, where $a,b,c\in R$. 3 marks

Definition

Rationalising the Denominator

Aim: To remove surds in the denominator.

$$\frac{1}{a-\sqrt{b}} = \frac{1}{a-\sqrt{b}} \times \frac{a+\sqrt{b}}{a+\sqrt{b}}$$

Multiply the top and bottom by the conjugate of the denominator.

<u>Discussion:</u> How does this work? What does $(a-\sqrt{b}) imes (a+\sqrt{b})$ equal to?

Let's look at some questions together!

Question 10 Walkthrough.

Rationalise the denominator for the following:

$$\frac{1}{2+\sqrt{7}}$$

Recall!

Active Recall

To rationalise the denominator, we multiply the numerator and denominator by ______ and expand.

Your Turn!

Question 11

Rationalise the denominator for the following.

a.
$$\frac{1+\sqrt{2}}{5-\sqrt{2}}$$

b.
$$\frac{5-\sqrt{6}}{7+\sqrt{6}}$$

Question 12 Additional Question.

Rationalise the denominator for the following. Write your answer in the form $\frac{a+b\sqrt{c}}{d}$.

$$\frac{3+\sqrt{2}}{6-\sqrt{2}}$$

TIP: We will need this skill again when we look at complex numbers later!

- A set is a collection of multiple values.
- When using interval notation, square brackets are used to include the endpoints and round brackets are used to exclude the endpoints.
- Arr Common number sets that are encountered in Specialist Mathematics are N (positive whole numbers), Z (integers), Q (rational numbers), R (real numbers) and C (complex numbers).
- To rationalise a fraction with a surd in the denominator, we can first multiply the numerator and denominator by the conjugate of the denominator and simplify by expanding.

Space for Personal Notes	

Section B: Statements

Sub-Section: Operation of Statements

What is a statement?

Context

Before we start looking at proof questions, we need to learn about statements.

Statements and its Operations

Statements can be very general.

A = Doing SM12

Negation: Everything but

 $\neg A$

Intersection

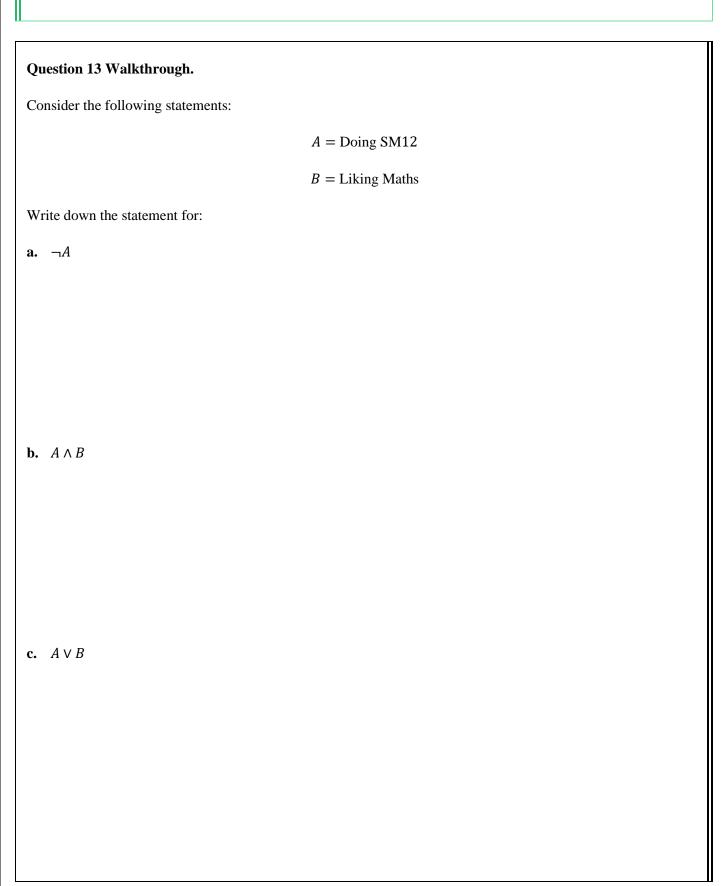
 $A \wedge B$

Union

 $A \vee B$

NOTE: We can use \cup notation instead of \vee .

Let's look at some questions together!



Recall!

Active Recall

For two statements A and B, $\neg A$ is the statement _____, $A \land B$ is the statement _____ and $A \lor B$ is the statement _____.

Your Turn!

Question 14

Consider the following statements:

A =Travelling to Argentina

B =Learning Spanish

Write down the statement for:

- **a.** ¬*A*
- **b.** $A \wedge B$

c. $A \lor \neg B$

Question 15 Additional Question.

Consider the following statements:

A = Taking Accounting $\frac{1}{2}$

 $B = \text{Taking Accounting } \frac{3}{4}$

Write down the statement for:

a. ¬*A*

b. $A \wedge \neg B$

 $\mathbf{c.}$ $A \vee B$

Sub-Section: De Morgans's Law

Context

Exploration: De Morgan's Law

Consider the statements:

A = I Like Chocolate

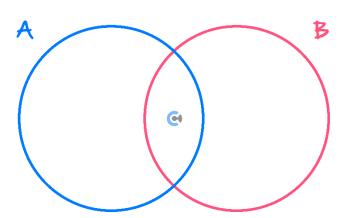
B = I Like Strawberry

- ➤ Consider $\neg (A \land B)$. Write it in words below!
- ightharpoonup Consider $\neg A \lor \neg B$. Write it in words below!
- Hence, we can say,

$$\neg (A \land B) = \neg A \lor \neg B$$

We can also say,

$$\neg (A \lor B) = \neg A \land \neg B$$



NOTE: If you expand or factorise negation, the union and intersection flips!

De Morgan's Law

$$\neg(A \land B) = \neg A \lor \neg B$$

$$\neg(A \lor B) = \neg A \land \neg B$$

Let's look at some questions together!

Question 16 Walkthrough.

Using De Morgan's Law, write down the statement below in a different way.

Negation of "Sam doesn't like SM or MM."

Active Recall

$$\neg (A \land B) = \underline{\hspace{1cm}}$$
 and $\neg (A \lor B) = \underline{\hspace{1cm}}$.

Your Turn!

Question 17

Using De Morgan's Law, write down the statement below in a different way.

Negation of "Bobby has an iPhone but doesn't have a Mac."

Question 18 Additional Question.

Using De Morgan's Law, write down the statement below in a different way.

Negation of "Bobby can speak Portuguese and English."

- We can do the following operations involving statements: $\neg A$ meaning "not A," $A \land B$ meaning "A or B," and $A \lor B$, meaning "A and B."
- ✓ De Morgan's Laws state that $\neg(A \land B) = \neg A \lor \neg B$ and $\neg(A \lor B) = \neg A \land \neg B$.
- ☑ We notice that in De Morgan's Laws, the intersections and unions flip.

Section C: Proving Number Sets

Sub-Section: Conditional Statements

Context

- Conditional statements will be the most important for us when doing a question involving proof.
- Check out this question from the sample Specialist Mathematics 3/4 exam. The "If ..., then ..." statement is an example of a conditional statement.

Question 1

Consider the following statement.

'For all integers n, if n^2 is even, then n is even.'

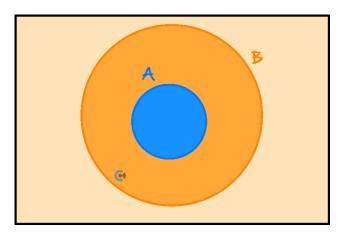
Which one of the following is the contrapositive of this statement?

- **A.** For all integers n, if n^2 is odd, then n is odd.
- **B.** There exists an integer n such that n^2 is even and n is odd.
- C. There exists an integer n such that n is even and n^2 is odd.
- **D.** For all integers n, if n is odd, then n^2 is odd.
- **E.** For all integers n, if n is even, then n^2 is even.

Discussion: If you are living, what must you be doing?

NOTE: Visually, imply is the same as "subset".

Conditional Statements



 $A \Longrightarrow B$

Notation for "implies": ⇒

"Hypothesis \Rightarrow Conclusion"

④ *A* is a _____ of *B*.

Let's look at some questions together!

Question 19 Walkthrough.

Write a conditional statement from each of the following:

All students at Contour Education are hard-working and diligent.

NOTE: Order Matters!

Recall!

Active Recall: Wha	t is the relationship between the hypothesis and the conclusion?	?

Your Turn!

Question 20

Write a conditional statement from each of the following:

Students doing SM12 are all brave.

Question 21 Additional Question.

Write a conditional statement from each of the following:

You must do well enough in English in order to study Law at University.

Sub-Section: Even and Odd Numbers

Context

Exam 1 of Specialist Mathematics 3/4 usually has a proof question. Here is a question from the sample exam. After this workbook, you will be proving the statement!

Question 4 (3 marks)

Use proof by contradiction to prove that if n is odd, where $n \in N$, then $n^3 + 1$ is even.

Exploration: Even and Odd Numbers

- Write out a few even numbers:
- We can rewrite them in the following way:
- Do you notice a pattern?

Even =

- Now write out a few **odd** numbers:
- We can rewrite them in the following way:
- There is a similar pattern for odd numbers!

Odd =

Proofs involving Even and Odd numbers

> Simply show:

$$Even = 2k, k \in Z$$
 $Odd = 2k + 1, k \in Z$

C

Let's look at some questions together!

Question 22 Walkthrough.

Prove that if n is even, then n^2 is also even.

NOTE: Start with the hypothesis by saying "let..."

Recall!

Active Recall: Odd and Even Numbers

- An even number can be written in the form ______.
- An odd number can be written in the form ______.
- lt is important to include $k \in \mathbb{Z}$.

Your Turn!

Question 23

Prove that if n is odd, then n^2 is also odd.

Question 24 Additional Question.
Prove that if two numbers a and b are odd, then their sum is even.

Sub-Section: Divisibility

Context

Even numbers are divisible by 2. How about divisibility by other numbers? Check out this divisibility question from the sample exam.

Question 3 (4 marks)

Prove by mathematical induction that the number $9^n - 5^n$ is divisible by 4 for all $n \in \mathbb{N}$.

Exploration:

- Write out a few numbers that are divisible by 3.
- Notice that these numbers can be written in the form:
- Therefore, any number that is divisible by 3 can be written in the form:

n =

Let's look at some questions together!

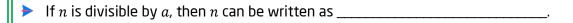
Question 25 Walkthrough.

Prove that if n is a multiple of 3, n^2 must be divisible by 9.

NOTE: For a number n to be divisible by a, n MUST be an integer multiple of a, that is you MUST be able to write $n = a \times \text{INTEGER}$.

Recall!

Active Recall



Your Turn!

Question 26

Prove the following statement: If n is a multiple of 4, n^2 must be divisible by 8.

Question 27 Additional Question.

Prove the following statements:

a. If *n* is a multiple of 3, then $n^2 + 10n + 9$ is divisible by 3.

b. If *n* is a multiple of 3, then $n^2 - 1$ is not divisible by 3.

c. If n is divisible by 3 and m is divisible by 10, then 5n + 7m is divisible by 5.

CONTOUREDUCATION

Divisibility Proof - Splitting by Cases

For divisibility of 2, we split the cases into ______.

Case 1:
$$2k$$
, $2k + 1$

For divisibility of n we split the cases into ______.

Case 1:
$$nk$$
, $nk + 1$, $nk + 2$ \cdots $nk + (n-1)$

7

Let's look at some questions together!

Question 28 Walkthrough.

Prove the following statement:

For any integer n, (n + 1)(n + 2) is an even number (divisible by 2).

NOTE: Split the case into two because we are checking the divisibility of 2.

Recall!

Active Recall: Splitting by cases

For a proof question where we want to show something is divisible by 3, we can split it into three cases where ______.

Your Turn!

Question 29

Prove the following statement: For any integer n, (n + 1)(n + 2)n is divisible by 3.

Question 30 Additional Question.

Prove the following statement below:

Prove that if $n = m^2$ for some integer m, then n = 4k or n = 4k + 1 for some integer k.

Sub-Section: Rational Numbers

$\underline{\text{Proving Rationals }(\mathbb{Q})}$

Write out a few rational numbers:

Write out a few numbers that are not rational numbers!

Not all fractions are rational numbers! What is the general form for a rational number?

Let's look at some questions together!

Question 31 Walkthrough.

Prove the following conditional statement:

If x is a rational number, $\frac{x+2}{x+3}$ is also a rational number.

Recall!

Active Recall: Rational numbers

A rational number can be written in the form:

Question 32

Prove the following conditional statement:

If x and y are rational numbers, $\frac{xy}{x+y}$ is also a rational number.

Question 33 Additional Question.

Prove the following statement below:

If x and y are rational numbers and y is not equal to zero, then x/y is also a rational number.

- Adding, subtracting and multiplying integers result in integers.
- An even number can be expressed as 2k where $k \in \mathbb{Z}$ and an odd number can be expressed as 2k+1 where $k \in \mathbb{Z}$.
- If n is divisible by a, then $n = a \times k$ where $k \in \mathbb{Z}$, meaning $n = a \times \text{INTEGER}$.
- Where helpful, we can approach a proof involving divisibility by considering different cases.

Contour Check

Learning Objective: [2.1.1] - Number sets

Key Takeaways

- A set is a collection of multiple values.
- When using interval notation, square brackets are used to include the endpoints and round brackets are used to exclude the endpoints.
- Common number sets that are encountered in Specialist Mathematics are N (positive whole numbers), Z (integers), Q (rational numbers), R (real numbers) and C (complex numbers).
- To rationalise a fraction with a surd in the denominator, we can first multiply the numerator and denominator by the conjugate of the denominator and simplify by expanding.

Learning Objective: [2.1.2] - Statements and operations

- We can do the following operations involving statements: $\neg A$ meaning "not A", $A \land B$ meaning "A or B", and $A \lor B$, meaning "A and B".
- De Morgan's Laws state that $\neg(A \land B) = \neg A \lor \neg B$ and $\neg(A \lor B) = \neg A \land \neg B$.
- ☐ We notice that in De Morgan's Laws, the intersection/union flips.

Learning Objective: [2.1.3] - Proving number sets

- Adding, subtracting and multiplying integers result in integers.
- An even number can be expressed as 2k where $k \in \mathbb{Z}$ and an odd number can be expressed as 2k + 1 where $k \in \mathbb{Z}$.
- If n is divisible by a, then $n = a \times k$ where $k \in \mathbb{Z}$, meaning $n = a \times \text{INTEGER}$.
- ☐ Where helpful, we can approach a proof involving divisibility by considering different cases.

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

