

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs I [2.1]

Test Solutions

20 Marks. 1 Minute Reading. 16 Minutes Writing.

Results:

Test Questions	/20	
l est Questions	/20	

Section A: Test Questions (20 Marks)

Question 1 (5 marks)

Tick whether the following statements are **true** or **false**.

Statement		True	False
a. Set given by $\{x x^2 \neq 16\}$ can be simplified to $R\setminus\{-4,4\}$.		✓	
b.	All integers are natural numbers hence $Z \subseteq N$.		✓
c.	1.91 is a rational number.	✓	
d.	To simplify $\frac{1}{2+\sqrt{3}}$, you multiply $2+\sqrt{3}$ on both top and bottom.		✓
e.	Opposite of liking maths and science is not liking maths or not liking science.	<	
f.	2k + 1 is an odd number regardless of what k is.		✓
g.	$\frac{m}{n}$ is a rational number only if m and n are integers. 5/2.5 is also rational. Order matters!		✓
h.	If m and n are non-zero integers, then $\frac{m}{n}$ is a rational number.	✓	
i. To prove that a number is divisible by 5, we simply show that the number is 5 times by an integer.		✓	
j.	Product of 5 consecutive numbers is always divisible by 5.	✓	

Space for Personal Notes

Question 2 (2 marks)

Express $\frac{2+\sqrt{5}}{-1-\sqrt{3}}$ in the form $\frac{a}{b}$ where $a \in R$ and $b \in N$.

 $\frac{2-2\sqrt{3}+\sqrt{5}-\sqrt{15}}{2}$

Space for Personal Notes

Question 3 (2 marks)				
James claims the following.				
All living humans breathe and eat.				
Pranit comes along and opposes the idea.				
a. What did Pranit say? (1 mark)				
There is at least one human that does not breathe or eat				
b. Who is correct? (1 mark)				
James				

Space for Personal Notes

Question 4 (5 marks)

Prove the following conditional statements.

a. If *n* is an even number, then $n^3 + n^2$ is also an even number. (2 marks)

 lef n=2k, he2	
 $n^3 + n^2 = n^2(n+1)$	
 = (2K)2(2K+1)	
 = 4k ² (2k+1)	
 -2[2k²(2k+1)]	
 =2m where m∈2	

b. If *n* is a natural number, then $n^3 - n$ is divisible by 3. (3 marks)

CI) lef n=3k,kez	(2) lef n=3k+1,kez	(3) lef n=3k+2,ke2
N3 - N	N3-N	N3-N
= n (n2-1) = v (n+1)(n-1)	$= N(N_5-1) = V(N+1)(N-1)$	= N (N3-1) = V (N+1)(N-1)
= 3k(3k+1)(3k-1)	=(3/41)(3/42)(3/44-1)	= (3k+2)(3k+3)(3k+1)
= 3m ,	= 3(3kH)(3k+2) h	= 3(3k+2)(k+1)(3k+1)
m= k(3k+) (3k+) \(\in 2 \).	m= k(3k+1)(3k+2)	'= 3m. m=(3k+2)(k+1)(3k+)
	€ 2	€ ₺

Question 5 (6 marks)

Prove the following statements:

a. For any integer n, if n is divisible by 3, then n^2 is divisible by 3. (2 marks)

Solution: We have n=3k where $k\in\mathbb{Z}$. Then $n^2=(3k)^2\\ =9k^2\\ =3(3k^2)\\ =3m$ where $m=3k^2\in\mathbb{Z}$, and so n^2 is divisible by 3.

b. For any integer m and n, if m is divisible by 2 and n is divisible by 5 then 7m + 4n is even. (2 marks)

Solution: Let m=2k and n=5p where $k,p\in\mathbb{Z}$. Then 7m+4n=14k+20p =2(7k+10p) =2r

where $r = 7k + 10p \in \mathbb{Z}$, and so 7m + 4n is even.

c. For any integer n, $(2n-1)^2 + (2n+2)^2$ is odd. (2 marks)

Solution: We have that $(2n-1)^2+(2n+2)^2=4n^2-4n+1+4n^2+8n+4$ $=8n^2+4n+4+1$ $=2(4n^2+2n+2)+1$ =2m+1 where $m=4n^2+2n+2\in\mathbb{Z}$, and so $(2n-1)^2+(2n+2)^2$ is always odd.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

