

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs I [2.1]

Homework

Homework Outline:

Compulsory Questions	Pg 2-Pg 15
Supplementary Questions	Pg 16-Pg 31

Section A: Compulsory Questions

Sub-Section [2.1.1]: Number Sets

Question 1

State all the number sets that the following are an element of:

a. $\sqrt{5}$

b. 5

c. $\pi + i$

d. $-\frac{3}{7}$

Space	for	Personal	Notes
Space	101	i Ci Soliai	140163

Question	2
Question	_

Express each of the following subsets of $\mathbb R$ in interval notation:

a. $\{x: x > -4\}$

b. $\{x: x \neq 1\} \cap \{x: x \geq -3\}$

c. $\{x: x \neq 0\} \cup \{x: x \leq 2\}$

CONTOUREDUCATION

Ouestion	3
Ouesuon	J

Rationalise the denominator, then simplify the following expressions:


a. $\frac{5}{\sqrt{3}}$

			_

b. $\frac{2}{1+\sqrt{2}}$

c. $\frac{\sqrt{8}+3}{2+\sqrt{5}}$

<u>Sub-Section [2.1.2]</u>: Operations on Statements

Qu	nestion 4	
Co	nsider the following statements:	
	A = It is raining. B = I go out running.	
Wr	rite down the following:	
a.	$A \wedge B$	
L	$\neg A$	
υ.	¬A	
c.	$\neg A \lor B$	
Sp	ace for Personal Notes	

Qu	testion 5
Us	e De Morgan's Law to write down the negation of the following statements:
a.	The cake is delicious and the coffee is hot.
b.	It is raining or the sun is shining.
c.	The computer is cheap and slow.

Qι	uestion 6	
Wı	rite the following as conditional statements:	
a.	Customers that spend over \$500 get a voucher.	
b.	All students who study hard pass their exams.	
c.	People who go to the gym grow their muscles.	

<u>Sub-Section [2.1.3]</u>: Proofs Involving Even and Odd Numbers

Question 7		J
For an integer n ,	show that if n is odd then n^2 is odd.	
Question 8		ó ó
Show that $(2n +$	$(5)^2 - (2n-1)$ is always even for any $n \in \mathbb{Z}$.	

stion 9		
Show that $n^2 + 5n + 6$ is even for all $n \in \mathbb{N}$. Space for Personal Notes		
ce for Personal Notes		

<u>Sub-Section [2.1.4]</u>: Proofs Involving Divisibility

Question 10						J
Show that if n is	divisible by 5,	then n^2 is div	visible by 5 f	for any $n \in \mathbb{N}$.		
Space for Pers	onal Notes					

Puestion 11 how that if n is divis	ible by 2 and <i>n</i>	ı iş divisihle hv	3 then 5 <i>n</i> ± 10 <i>1</i>	n is even for all n	$m \in \mathbb{N}$	
iow that if it is divis	ible by 2 and 11	i is divisible by	3, then $3n + 10n$	it is even for an it,	$m \in \mathbb{N}$.	
uestion 12						
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		الأر
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		الرار
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		الرار
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
how by cases that fo	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		
	$r n \in \mathbb{Z}$, if n is	not divisible by	3, then n^2 is not	divisible by 9.		

11

<u>Sub-Section [2.1.5]</u>: Proofs Involving Rational Numbers

Question 13	Í
Show that if \sqrt{x} is rational, then x is rational for any $x \in \mathbb{R}$.	
Space for Personal Notes	

Question 14		_			
how that if both x	and y are rational	$1, \text{ then } x^2 - y^3 \text{ is}$	rational.		
					
	·				
Question 15					
	es for $x, y \in \mathbb{R}$ such	ch that r and v ar	e irrational but Y	^y is rational	
	es for $x, y \in \mathbb{R}$ suc	ch that x and y ar	e irrational, but x^2	^y is rational.	
	es for $x, y \in \mathbb{R}$ suc			^y is rational.	
	es for $x, y \in \mathbb{R}$ suc)))
	es for $x, y \in \mathbb{R}$ suc				
	es for $x, y \in \mathbb{R}$ such				- - -
	es for $x, y \in \mathbb{R}$ such				
	es for $x, y \in \mathbb{R}$ such				
	es for $x, y \in \mathbb{R}$ such				
	es for $x, y \in \mathbb{R}$ such				
	es for $x, y \in \mathbb{R}$ such				
Question 15 ind possible value	es for $x, y \in \mathbb{R}$ such				
ind possible value					
ind possible value					

Sub-Section: The 'Final Boss'

Qu	estion 16
Cor	nsider the statements:
	A: n is an even integer. B: n < 0
a.	Write the statement $A \land \neg B$ in words.
b.	Prove that if $A \wedge \neg B$ is true, then $n^2 + 3n + 1$ is odd.

<u> </u>	
Prove that the product of any two odd integers is odd.	
ace for Personal Notes	

Section B: Supplementary Questions

Sub-Section [2.1.1]: Number Sets

Question 17

State all the number sets that the following are an element of:

- a. $\sqrt{5}$
- **b.** 5
- c. $\pi + i$
- **d.** $-\frac{3}{7}$

CONTOUREDUCATION

Question 18

Express each of the following subsets of ${\mathbb R}$ in interval notation.

- **a.** $\{x: x > 3\}$
- **b.** $\{x: -8 < x < 1\} \cap \{x: x \ge -3\}$
- _____
- c. $\{x: x \neq 1\} \cup \{x: x \leq 5\}$

CONTOUREDUCATION

Ouestion	19
Quesuon	17

Rationalise the denominator and then simplify the following expressions:

a. $\frac{2}{\sqrt{3}}$

b. $\frac{1}{3+\sqrt{2}}$

 $\mathbf{c.} \quad \frac{\sqrt{30+7}}{4+\sqrt{7}}$

Question 20	
Rationalise the denominator of the following expression and simplify:	
$\frac{x+\sqrt{y}}{\sqrt{a}+\sqrt{b}},$	
where $x, y, a, b > 0$ and $a \neq b$.	

5	Space for Personal Notes

<u>Sub-Section [2.1.2]</u>: Operations on Statements

-
_
-
-
-
-

Qu	nestion 22
Us	e De Morgan's Law to write down the negation of the following statements:
a.	The movie is entertaining and the popcorn is tasty.
b.	The traffic is light or the weather is clear.
c.	The phone is affordable and has a good camera.
	The phone to direct union and the dispose cultical.

Qu	nestion 23	
Wı	rite the following as conditional statements:	
a.	People who recycle help the environment.	
D.	Employees who work overtime earn extra pay.	
c.	Athletes who practice regularly improve their performance.	

Question 24		
Simplify the following logical e	xpression using De Morgan's Laws:	
	$\neg((P \land Q) \lor (\neg R \land S)).$	
Give your answer in the form		
	$(A \lor B) \land (C \lor D)$	

Space for Personal Notes

<u>Sub-Section [2.1.3]</u>: Proofs Involving Even and Odd Numbers

	stion 25	
For	an integer n , show that if n is even then n^3 is even.	
-		
-		
-		
-		
-		
_		
One	stion 26	
	w that, $(4n+2)^2 - (2n-1)$ is always odd for any $n \in \mathbb{Z}$.	
SHO	w that, $(4n+2)^n - (2n-1)$ is always odd for any $n \in \mathbb{Z}$.	
-		
-		
-		
-		
-		

Question 27	الالا
Show that $n^2 + 7n + 10$ is even for all $n \in \mathbb{N}$.	
Question 28	الألالا
Prove that the product of any two odd integers minus the sum of the same two int	
	······································
	

SM12 [2.1] - Proofs I - Homework

<u>Sub-Section [2.1.4]</u>: Proofs Involving Divisibility

Question 29				
Show that if n is divisible by 7, then n^2 is divisible by 7 for any $n \in \mathbb{N}$.				
Spa	ace for Personal Notes			

Question 30		
Show that if n is a	divisible by 2 and m is divisible by 3, then $3n + 4m$ is divisible by 3 for all $n, m \in \mathbb{N}$.	
uestion 31		
rove that if m and	and n are even integers, then $m^2 + n^2$ and $m^2 - n^2$ are both divisible by 4.	

that the sum of any two consecutive odd numbers is divisible by 4.	-

<u>Sub-Section [2.1.5]</u>: Proofs Involving Rational Numbers

Question 33	j
Show that if $\sqrt[3]{x}$ is rational, then x is rational for any $x \in \mathbb{R}$.	
Space for Personal Notes	
Space for Personal Notes	

Question 34					
how that if both x and	nd y are rational,	then $x^2 + y^2$ is a	ational.		
euestion 35					ÓÓ
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		Ó
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.)) _
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		<u> </u>
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		<u> </u>
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		••••••••••••••••••••••••••••••••••••••
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		••••••••••••••••••••••••••••••••••••••
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		- - - -
	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		
Question 35 rove that if x is ratio	nal and $x \neq 0$, th	en $\frac{1}{x}$ is also ration	nal.		

$\mathbf{\Omega}$		20
U	uestion	30

Prove that if x and y are rational and $x, y \neq 0$ then

$$\frac{(x-2y)^5 + x^2 + 3y}{x^2 + 2y^2}$$

is rational.						

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

