

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
AOS 2 Revision [2.0]
Contour Check

Contour Check

[2.1] - Proofs I (Checkpoints)

- ☐ [2.1.1] Number Sets Pg 3-6
- [2.1.2] Operations on Statements Pg 7-10
- [2.1.3] Proofs Involving Even and OddNumbersPg 11-12
- [2.1.4] Proofs Involving Divisibility Pg 13-15
- [2.1.5] Proofs Involving Rational NumbersPg 16-18

[2.2] - Proofs II (Checkpoints)

- [2.2.1] Direct and Indirect Proofs Pg 19-21
- [2.2.2] Proofs involving Converse and Equivalent Statements Pg 22-24
- [2.2.3] Proofs involving the Universal and Existence QuantifiersPg 25-28
- [2.2.4] Telescoping Series and Proofs by InductionPg 29-32

[2.3] - Proofs Exam Skills (Checkpoints)

- [2.3.1] Solve Problems Using AM-GMInequalitiesPg 33-34
- [2.3.2] Solve Arithmetic and Geometric ProofsPg 35-37
- [2.3.3] Prove Divisibility With InductionPg 38-40

[2.4] - Logic & Algorithms I (Checkpoints)

- [2.4.1] Write and Understand Basic Algorithms Pg 41-42
- [2.4.2] Understanding and Evaluating Algorithms that Have Conditional Statements and Represent Hybrid Functions as Algorithms Pg 43-44
- [2.4.3] Understand and Evaluate Algorithms with LoopsPg 45-47
- ☐ **[2.4.4]** Write and Evaluate Functions using Pseudocode Pg 48-50

[2.5] - Logic & Algorithms II (Checkpoints)

- [2.5.1] Understand the Basics of Logic and Propositional StatementsPg 51-52
- [2.5.2] Construct Truth Tables and RecogniseEquivalent Logical ExpressionsPg 53-54
- [2.5.3] Represent Logical Expressions using Switching Circuits and Logic Gates Pg 55-56
- [2.5.4] Simplify and Evaluate Boolean Algebra Expressions using Algebraic Identities and Karnaugh Maps
 Pg 57-61

[2.1 - 2.5] - Exam 1 Overall (Checkpoints)

Pg 62-67

[2.1 - 2.5] - Exam 2 Overall (Checkpoints)

Pg 68-71

Section A: [2.1] - Proofs I (Checkpoints)

<u>Sub-Section [2.1.1]</u>: Number Sets

Question 1

State all the number sets that the following are an element of:

- **a.** $\sqrt{5}$
- **b.** 5
- c. $\pi + i$
- **d.** $-\frac{3}{7}$

Question	2
& creption.	_

Express each of the following subsets of $\mathbb R$ in interval notation.

a. $\{x: x > 3\}$

b. $\{x: -8 < x < 1\} \cap \{x: x \ge -3\}$

c. $\{x: x \neq 1\} \cup \{x: x \leq 5\}$

CONTOUREDUCATION

Question 3

Rationalise the denominator and then simplify the following expressions.

a. $\frac{2}{\sqrt{3}}$

Question 4	
Rationalise the denominator of the following expression and simplify	
$\frac{x + \sqrt{y}}{\sqrt{a} + \sqrt{b}},$	
Where $x, y, a, b > 0$ and $a \neq b$.	

S	space for Personal Notes

<u>Sub-Section [2.1.2]</u>: Operations on Statements

Que	estion 5	
Cor	nsider the following statements:	
	A = It is hot outside. B = I go to the beach.	
Wri	ite down the following:	
a.	$A \wedge B$.	
b.	$\neg B$.	
c.	$\neg A \lor \neg B$.	

Qu	nestion 6
Us	e De Morgan's Law to write down the negation of the following statements:
a.	The movie is entertaining and the popcorn is tasty.
b.	The traffic is light or the weather is clear.
c.	The phone is affordable and has a good camera.
C-	and for Derranal Mater
>b	pace for Personal Notes

Qι	uestion 7	الرازار
Wı	rite the following as conditional statements.	
a.	People who recycle help the environment.	
b.	Employees who work overtime earn extra pay.	
c.	Athletes who practice regularly improve their performance.	
П		

Question 8	
Simplify the following logical expression using De Morgan's Laws:	
$\neg((P \land Q) \lor (\neg R \land S)).$	
Give your answer in the form:	
$(A \vee B) \wedge (C \vee D).$	

Space for Personal Notes		

<u>Sub-Section [2.1.3]</u>: Proofs Involving Even and Odd Numbers

Question 9	
For an integer n , show that if n is even then n^3 is even.	
	((
Question 10	
Show that $(4n+2)^2 - (2n-1)$ is always odd for any $n \in \mathbb{Z}$.	

Question 11		
Show that $n^2 + 7n + 1$	10 is even for all $n \in \mathbb{N}$.	
		1111
Question 12		الالا
Prove that the product	of any two odd integers minus the sum of the same two integers is always even.	

<u>Sub-Section [2.1.4]</u>: Proofs Involving Divisibility

Que	estion 13	
Sho	w that if n is divisible by 7, then n^2 is also divisible by 7 for any $n \in \mathbb{N}$.	
Spa	ace for Personal Notes	

ow that if <i>n</i> , is divisi	ole by 2 and m is divisi	ble by 3, then 3n	+4m is divisible	e by 3 for all <i>n. n</i>	$n \in \mathbb{N}$.
JW that if h is division	ic by 2 and no is divisi	ole by 3, then 3.	1111 15 01 115101	c by 5 101 all 16, 11	<i>t</i> C 10.
-					
action 15					<u> </u>
nestion 15					
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	e even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	e even integers, then <i>n</i>	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	e even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	e even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	
	re even integers, then n	$n^2 + n^2$ and $m^2 -$	n^2 are both divi	isible by 4.	

Question 16	
Prove that the sum of any two consecutive odd numbers is divisible by 4.	
Space for Personal Notes	

<u>Sub-Section [2.1.5]</u>: Proofs Involving Rational Numbers

Question 17					
Show that if [§]	$\sqrt[3]{x}$ is rational, then	x is rational for any	$y x \in \mathbb{R}$.		
Space for Pe	ersonal Notes				

uestion 18				
now that if both	x and y are ratio	nal, then $x^2 + y^2$ i	s rational.	
			·	
				4 4
uestion 19				
	ational and $x \neq$	0 then ¹ is also rat	ional	
	ational and $x \neq$	0, then $\frac{1}{x}$ is also rat	onal.	
	ational and $x \neq$	0, then $\frac{1}{x}$ is also rat	ional.	الله الله
	ational and $x \neq$	0, then $\frac{1}{x}$ is also rat	ional.	
	ational and $x \neq$	0, then $\frac{1}{x}$ is also rat	onal.	
	ational and $x \neq$	0, then $\frac{1}{x}$ is also rat	onal.	
	ational and $x \neq$	0, then $\frac{1}{x}$ is also rat	onal.	
	ational and $x \neq$	0, then $\frac{1}{x}$ is also rat	ional.	
	ational and x ≠	0, then $\frac{1}{x}$ is also rat	ional.	
	ational and <i>x</i> ≠	0, then $\frac{1}{x}$ is also rat	ional.	
	ational and <i>x</i> ≠	0, then $\frac{1}{x}$ is also rat	ional.	
rove that if x is i	ational and x ≠	0, then $\frac{1}{x}$ is also rat	ional.	

Ouestion	20
Question	4 U

Prove that if x and y are rational and $x, y \neq 0$ then,

$$\frac{(x-2y)^5 + x^2 + 3y}{x^2 + 2y^2}$$

is ra	tional.	
•		

Section B: [2.2] - Proofs II (Checkpoints)

<u>Sub-Section [2.2.1]</u>: Direct and Indirect Proofs

Question 21	
Prove that all numbers of the form $n^3 - n$, where $n \in \mathbb{Z}$, are multiples of 6.	
	6 6
Question 22	
Prove the following statement using a proof by contrapositive: If n^5 is odd, then n is odd.	

Question 23	الالا
Prove the following statement using a proof by contradiction: $\sqrt{5} + \sqrt{7} < 5$.	
Space for Personal Notes	

Ouestion	24
Ouesuon	24

Prove that for a, b > 0, we have $a + b \ge \left(\frac{1}{a} + \frac{1}{b}\right)^{-1}$.

<u>Sub-Section [2.2.2]</u>: Proofs involving Converse and Equivalent Statements

Question 25	1
Write the converse of the following statements.	
a. If a person exercises regularly, they stay healthy.	
b. If a car is fuel-efficient, it saves money on gas.	
c. If a student studies, they pass their exams.	
Space for Personal Notes	

uestion 27 ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.	uestion 26						
nuestion 27 ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.	ippose $n \in \mathbb{Z}$. Prov	e that n is odd, if an	nd only if $3n + 1$	1 is even.			
nuestion 27 ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							_
nuestion 27 ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							
to the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							_
to the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							-
to the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							_
to the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							
nestion 27 ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							_
ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							-
ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							_
ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							
ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							
ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.							
ove the following statement: $\frac{n(n+1)}{2}$ is a natural number, if and only if n is a natural number.						ń	
	uestion 27						
pace for Personal Notes							
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	n, if and only if n	is a natural numb	er.	
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	-
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural numbei	, if and only if n	is a natural numb	er.	- -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- -
Dace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
pace for Personal Notes		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
		tatement: $\frac{n(n+1)}{2}$ is	a natural number	, if and only if n	is a natural numb	er.	- - -
	rove the following s		a natural number	, if and only if n	is a natural numb	er.	- - -
	ove the following s		a natural number	r, if and only if n	is a natural numb	er.	- - -

rove the following statement: For any integer n, n is divisible by 3, if and only if the sum of its digits is divis y 3.		euestion 28	
		ove the following statement: For ar	ny integer n , n is divisible by 3, if and only if the sum of its digits is divisi
		3.	
pace for Personal Notes	ice for Personal Notes		
pace for Personal Notes	ce for Personal Notes		
pace for Personal Notes	ice for Personal Notes		
pace for Personal Notes	ce for Personal Notes		
pace for Personal Notes	ice for Personal Notes		
pace for Personal Notes	ice for Personal Notes		
pace for Personal Notes	ice for Personal Notes		
pace for Personal Notes	ice for Personal Notes		
pace for Personal Notes	ice for Personal Notes		
		pace for Personal Notes	

<u>Sub-Section [2.2.3]</u>: Proofs involving the Universal and Existence Quantifiers

Question 29				
Write the following statements in terms of the universal (\forall) and existential (\exists) quantifiers.				
a.	All positive integers are greater than zero.	_		
		-		
b.	There exists an integer that is a perfect square.			
		-		
c.	For all real numbers x , if $x > 0$, then $\frac{1}{x} > 0$.	-		
		-		
Sp	ace for Personal Notes			

CONTOUREDUCATION

Question 30

Negate the following statements involving universal and existential quantifiers.

a. $\forall n \in \mathbb{Z}, n + 0 = n$

b. $\exists x \in \mathbb{R}$, $x^3 = 8$

 $\mathbf{c.} \quad \forall x \in \mathbb{R} \,, x^2 \, \geq \, 0$

c. √x ⊂ 1a, x ≥ 0

Que	estion 31	
Dis	prove the following statements by providing a counterexample.	
a.	Disprove that for all integers $n, n^3 - n$ is always odd.	
b.	Disprove that there exists an integer n such that, $2n + 1 = 0$.	
c.	Disprove that for all real numbers $x, x^2 + x$ is greater than 1.	

Question 32			
-------------	--	--	--

Prove that:

$$\forall a,b \in \mathbb{R}^+ \cup \{0\}, \frac{a+b}{2} \geq \sqrt{ab}$$

Sub-Section [2.2.4]: Telescoping Series and Proofs by Induction

O	uestion	33

Simplify the following telescoping series using partial fraction decomposition and simplification.

$$\sum_{k=1}^{n+1} \frac{1}{(k+1)(k+2)} = \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)}$$

Question 34

Prove the following statement by induction:

$$2 + 4 + 6 + \cdots + 2n = n(n + 1)$$
 for all integers $n \ge 1$.

Space for Personal Notes

30

Question 35

Prove the following statement by induction:

$$a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(r^{n}-1)}{r-1}$$
 for all integers $n \ge 1$.

Question 36

Prove the following statement by induction:

$$a + (a + d) + (a + 2d) + \dots + (a + (n - 1)d) = \frac{n}{2}(2a + (n - 1)d)$$
, for all integers $n \ge 1$.

Section C: [2.3] - Proofs Exam Skills (Checkpoints)

Sub-Section [2.3.1]: Solve Problems Using AM-GM Inequalities

Question	37

Show using the AM-GM inequality that for x > 0 we have:

$$5x + \frac{5}{x} \ge 10$$

Question	38
Question	20

Minimise $2x + \frac{2}{x}$ over x > 0 by applying the AM-GM inequality, and hence maximise $6 - 2x - \frac{2}{x}$.

Question 39	
	or the area of a rectangle that has a perimeter of 4 units and a width of x units, and hence us ity to maximise the area of such a rectangle.
Question 40	ó ó ó
	rmore, suppose that $xy = 4$. Find the minimum value of $xy^3 + x^3y$.
Let $x, y > 0$. I utilies	Thore, suppose that $xy = 1.1$ find the minimum value of $xy = 1$ $x = y$.
Space for Personal	Notes
-pace 101 1 C1301101	

<u>Sub-Section [2.3.2]</u>: Solve Arithmetic and Geometric Proofs

Question 41				_
Prove using induction	1 that $2 + 7 + 12 + 12$	$\cdots + (5n-3) =$	$\frac{n(5n-1)}{2}.$	

Question	42
Question	

Prove using induction that $1 \cdot 7 + 2 \cdot 8 + \cdots + n(n+6) = \frac{n(n+1)(2n+19)}{6}$.

Question 43

Prove using induction that $2 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3 + \dots + 2 \cdot 3^n = 3^{n+1} - 3$.

Question 44

a. Prove using induction that for all $n \in \mathbb{N}$, $1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$.

b. Hence, write a rule for $2^3 + 4^3 + \cdots + (2n)^3$.

Hint: $2^3 + 4^3 + \cdots + (2n)^3$ is related to $1^3 + 2^3 + \cdots + n^3$ in a reasonably simple way.

c. Now, deduce a rule for $1^3 + 3^3 + \cdots + (2n-1)^3$ using the rule you obtained above.

<u>Sub-Section [2.3.3]</u>: Prove Divisibility With Induction

Question 45					
Prove using in	nduction that if $n \in$	N, then $8^n - 1$ is	s divisible by 7.		
Space for Pe	ersonal Notes				

Question 46				
Prove using induction that if $n \in \mathbb{N}$, then $n^3 + 3n^2 + 2n$ is divisible by 3.				
Note: If you want to make this question a bit harder, you can instead show that $n^3 + 3n^2 + 2n$ is also divisible by 6. You might need to use the fact that the product of two consecutive integers is always even.				
	-			
	-			
Space for Personal Notes				

Question 47	الراز
Prove using induction that if $n \in \mathbb{N}$, then $10^{n+1} + 10^n + 1$ is divisible by 3.	
Note: The statement says that 111, 1101, 11001, etc., are all divisible by 3.	
Question 48	ענענ
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if divisible by 2^n .	$n \in \mathbb{N}$, then $(2n)!$ is
- 	

Section D: [2.4] - Logic & Algorithms I (Checkpoints)

<u>Sub-Section [2.4.1]</u>: Write and Understand Basic Algorithms

Question 49	/
Construct an algorithm that multiplies any input given by 10.	
Question 50	
Construct an algorithm that adds any input given by 5.	
Space for Personal Notes	

Question 51	
Construct an algorithm that subtracts any input given by 5 and multiplies by 2.	
Space for Personal Notes	

<u>Sub-Section [2.4.2]</u>: Understanding and Evaluating Algorithms That Have Conditional Statements and Represent Hybrid Functions as Algorithms

Question 52

Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 3x - 5 & x \ge 0 \\ x - 1 & x < 0 \end{cases}$$

Question 53

Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Λ	uestion	54
u	uesuon	24

Turn the following function into an algorithm.

$$f(x) = \begin{cases} x^2 & x \ge 1\\ -2x + 1 & x < 1 \end{cases}$$

Question 55

Turn the following function into an algorithm.

$$f(x) = \max\{n \in \mathbb{R} | n \le x\}$$

Sub-Section [2.4.3]: Understand and Evaluate Algorithms with Loops

Question 56
Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm.
Step 1: $A \leftarrow 30$
Step 2: $A \leftarrow 3A - 20$
Step 3: Repeat 2 while $A > 65$.

45

Question 57	M
Evaluate the following algorithm:	
For a from 1 to 10	
if $a = \text{even}$, then print "yes"	
else	
print "no" end for.	
cha for.	

Question 58

Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm.

Step 1: $A \leftarrow 60$ Step 2: $A \leftarrow 2A - 50$		
Step 3: Repeat 2 while $A \le 130$.		

Ouestion	59
Oueshon	ンフ

Evaluate the following output:

$$a \leftarrow 5$$

$$b \leftarrow 10$$
if $a - b < 5$

$$a \leftarrow a - 5$$

$$b \leftarrow b - 10$$
end if
print a, b .

Space	for	Personal	Notes

<u>Sub-Section [2.4.4]</u>: Write and Evaluate Functions using Pseudocode

Question 60	
$A \leftarrow [\]$	
for n from 1 to 5	
append n to A .	
if $n = 1$, then	
return	
else	
$A = \sqrt{n^2 + A[n-1]}$	
if $A = integer$	
print " $A[n-1]$, n , A is a perfect triangle."	
end for.	
	-
	-
	-
	-
	•
	•
	_

Question 61		
a.	Roger decided to invest \$1000 at an interest rate of 10% compounded monthly. Construct an algorithm that computes the number of years needed for Roger's investment to double.	
b.	Jacob decided to invest \$500 at an interest rate of 15% compounded annually. Construct an algorithm that computes the number of years needed for Jacob's investment to increase by 50%.	
Sp	ace for Personal Notes	

Question 62	
Using pseudocode, write an algorithm to find all the primes less or equal to 100.	
Question 63	
Using pseudocode, construct an algorithm for the following:	
Find the shortest distance between any 2 <i>different</i> coordinates from the list of coordinates.	
Y coordinate = [1, 35, 5, 41, 5] X coordinate = [123, 2, 74, 213, 2]	

Section E: [2.5] - Logic & Algorithms II (Checkpoints)

<u>Sub-Section [2.5.1]</u>: Understand the Basics of Logic and Propositional Statements

Question 64		Í
Translate the following to English: P = I eat healthy. Q = I exercise regularly. R = I will lose weight.		
	$P \wedge Q \Rightarrow R$	

(Question 65		
E	Franslate the following to English: A = I go jogging. B = The weather is good. C = I will feel energised.		
	<u> </u>	$\neg B \Rightarrow (\neg A \land \neg C)$	

Question 66	Ó
Translate into propositional logic using the correct syntax:	
If the team wins the match, then the fans will celebrate and the opposing team will be disappointed.	
	_
	_
	_
	_
Question 67	<u> </u>
Translate into propositional logic using the correct syntax:	
If the baker uses old flour, then the bread will not rise and the customers will complain.	
	_
	_
	_
	_
Space for Personal Notes	

<u>Sub-Section [2.5.2]</u>: Construct Truth Tables and Recognise Equivalent Logical Expressions

Ω	estion	40
\ ////	6211011	เมล

Write the truth table for:

 $\sim p \vee q$

Question 69

Write the truth table for:

 $(p \land q) \lor (p \lor q)$

Question 70

Construct a truth table for the statement $(p \oplus q) \Rightarrow r$, where \oplus is the exclusive or.

Question 71

Construct a truth table for the statement $\neg(p \land q) \oplus r$.

<u>Sub-Section [2.5.3]</u>: Represent Logical Expressions using Switching Circuits and Logic Gates

Question 72

Use logic gates to represent the following expression and draw the corresponding truth table:

$$p \land \neg q$$

Question 73

Use logic gates to represent the following expression and draw the corresponding truth table:

$$\neg(p \land q)$$

Expression
$$egin{array}{c|c} (p \land q) : & & & & \\ \hline \hline p & q & \neg (p \land q) \\ \hline 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \hline \end{array}$$

Question 74

Sketch a logic gate for the following expression:

$$A(B + CD)$$

Question 75

Sketch a logic gate for the following expression:

$$[A(C+D)]'+BE$$

<u>Sub-Section [2.5.4]</u>: Simplify and Evaluate Boolean Algebra Expressions using Algebraic Identities and Karnaugh Maps

Qu	estion 76	
Sim	applify each expression by algebraic manipulation.	
a.	$\bar{a} \cdot 0 =$	
,		
b.	a + a =	
c.	$a + \bar{a}b =$	

CONTOUREDUCATION

Question 77

Simplify each expression by algebraic manipulation.

- $\mathbf{a.} \quad y + y\overline{y} =$
 - _____
- **b.** $xy + x\bar{y} =$

 - $\mathbf{c.} \quad \bar{x} + y\bar{x} =$

CONTOUREDUCATION

Question 78

Simplify each expression by algebraic manipulation.

- **a.** $(w + \bar{x} + y + \bar{z})y =$
- **b.** $(x + \bar{y})(x + y) =$
- $\mathbf{c.} \quad w + (w\bar{x}yz) =$

Question 79

Simplify the following expression by algebraic manipulation:

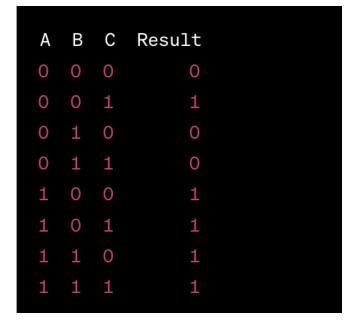
$$(x+z)(\bar{x}+y)(z+y) =$$

- _____

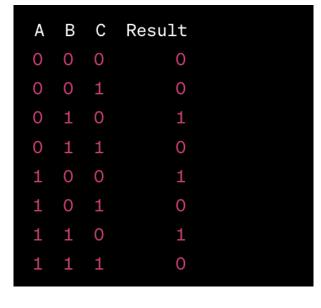
Question 80

Using a Karnaugh map, identify the Boolean expression corresponding to each of the following truth tables:

a.



b.



Section F: [2.1-2.5] - Exam 1 Overall (Checkpoints) (27 Marks)

Question 81 (3 marks)	V
Inspired from VCAA Specialist Mathematics Exam 1 2024 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/2024specmaths1-w.pdf#page=3	
Prove that if x is an odd integer then $2x^2 - 3x - 7$ is even, using direct proof.	
Space for Personal Notes	

Question 82 (4 marks)

Inspired from VCAA Specialist Mathematics Exam 1 2024

https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/NHT/2024SM1-nht-w.pdf#page=7

■ <i>N</i> .	nduction that 1×7		

Question 83 (4 marks)					
Prove using induction that for all $n \in \mathbb{N}$, $n < 2^n$.					
					
<u></u>					
Question 84 (3 marks)					
Consider the statement below:					
There cannot exist two integers m and n such that $5m + 10n = 3$.					
a. Write down a statement to begin a proof by contradiction for the statement above. (1 mark)					
b. Hence, obtain a contradiction and prove the original statement. (2 marks)					
- 					

Ques	tion 85 (4 marks)					
Prove using induction that $6^n + 4$ is divisible by 5 for all $n \in \mathbb{N}$.						
_						
_						
_						
_						
_						
_						
_						
_						
_						
_						
Spac	e for Personal Notes					

Question 86 (4 marks)
Prove using induction that for all $n \in \mathbb{N}$, it holds that $\left(1 + \frac{1}{1}\right)\left(2 + \frac{1}{2}\right)\cdots\left(1 + \frac{1}{n}\right) = n + 1$.

	Space for Personal Notes
I	
I	

Question 87 (5 marks) Prove the following biconditional statement for $x, y \in \mathbb{Z}$:				
. 10	$x + y$ is even, if and only if, $x^2 + y^2$ is even.			
Sp	ace for Personal Notes			

Section G: [2.1-2.5] - Exam 2 Overall (Checkpoints) (7 Marks)

Question 88 (1 mark)

Inspired from VCAA Specialist Mathematics Exam 2 2024 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/2024specmaths2-w.pdf#page=2

Consider the statement:

For any integers m and n, if $m + n \ge 9$ then $m \ge 5$ or $n \ge 5$.

The contrapositive of this statement is:

- **A.** If m < 5 or n < 5, then m + n < 9.
- **B.** If $m \ge 5$ or $n \ge 5$, then $m + n \ge 9$.
- **C.** If m < 5 and n < 5, then m + n < 9.
- **D.** If $m \le 5$ and $n \le 5$, then $m + n \le 9$.

Question 89 (1 mark)

Inspired from VCAA Specialist Mathematics Exam 2 2024 https://www.vcaa.vic.edu.au/Documents/exams/mathematics/2024/NHT/2024SM2-nht-w.pdf#page=2

Consider the following proof:

Prove that
$$\sqrt{15} + \sqrt{7} > \sqrt{19}$$
.
Assume $\sqrt{15} + \sqrt{7} \le \sqrt{19}$.
Then $(\sqrt{15} + \sqrt{7})^2 \le 19$
 $15 + 2\sqrt{105} + 7 \le 19$
 $2\sqrt{105} \le -3$
Hence, $\sqrt{15} + \sqrt{7} > \sqrt{19}$.

This proof can be best described as a:

- A. Direct proof.
- **B.** Proof by contrapositive.
- C. Proof by contradiction.
- **D.** Proof by counter-example.
- **E.** Proof by mathematical induction.

Question 90 (1 mark)

The contrapositive to the statement, "If n is even, then n^2 is even." is:

- **A.** If n^2 is odd, then n is odd.
- **B.** If n^2 is even, then n is even.
- C. If n is odd, then n^2 is even.
- **D.** If n is odd, then n^2 is odd.

Question 91 (1 mark)

Consider the following:

For all
$$k > K$$
, $1.5^k < (k-1)!$

What is the smallest value of $K \in \mathbb{N}$ such that the above holds?

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

Question 92 (1 mark)

The negation of the statement, "All the cars in the carpark are black." is:

- **A.** All the vans in the carpark are black.
- **B.** There exists a car in the carpark that is not black.
- **C.** There exists a bus in the carpark without a mirror.
- **D.** All the cars in the carpark are yellow.

Question 93 (1 mark)

Find the minimum value of $6x^2 + \frac{6}{x^2}$.

- **A.** 6
- **B.** 25
- **C.** 15
- **D.** 12

Question 94 (1 mark)

Consider the following statement:

If a car in the carpark is black, then it costs a lot of money.

Which of the following is the converse of the above?

- **A.** If a bus in the carpark costs a lot of money, then it is not black.
- **B.** If a car costs a lot of money, then it is in the carpark.
- C. If a car in the carpark is not black, then it costs a lot of money.
- **D.** If a car in the carpark costs a lot of money, then it is black in colour.

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

