

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Sequences & Series Exam Skills [1.4]

Workbook

Outline:

	T	
Recap Sequences Recurrence Relations Introduction to Series Introduction to Arithmetic Sequence Arithmetic Recurrence Relation Arithmetic Mean Arithmetic Series Geometric Sequence Geometric Recurrence Relation Geometric Sequence Infinite Geometric Series	Sequences & Series Exam Skills Find Arithmetic Sequence Find Geometric Sequence Exam 1 Tech Active Exam Skills Exam 2	Pg 15-18 Pg 19-23 Pg 24-25 Pg 26-31

Section A: Recap

Sub-Section: Sequences

Sequences

$$t_n = f(n)$$

- **Definition**: A sequence is an ordered list of numbers following a certain **pattern**.
- lt is a ______of the order_____.

Question 1

The sequence is defined by $t_n = 3^n + 1$. Identify the term number for which t_n equals 10.

Sub-Section: Recurrence Relations

What if we define the term t_n with respect to the previous term (t_{n-1}) ?

Recurrence Relations

- Definition:
 - A recurrence relation is when we define **a term** (t_n) , in terms of the **previous one** (t_{n-1}) .
 - @ Recurrence relations generate sequences of the form:

$$t_n = f(t_{n-1})$$
 where $t_1 = a$

Or

$$t_{n+1} = f(t_n)$$
 where $t_1 = a$

lt must always include a _______

Question 2

Consider the following recurrence relation:

$$t_n = 4t_{n-1} - 1$$
, $t_1 = 3$

State the value of t_3 .

Sub-Section: Introduction to Series

What does the word "series" mean?

Series

- Definition:
 - lacktriangledown A series is the sum of the first n terms of a sequence.

$$S_n = \sum_{i=1}^n t_i$$

Question 3

Consider the sequence given by $t_n = 2n + 4$.

Evaluate S_4 .

Sub-Section: Introduction to Arithmetic Sequence

Arithmetic Sequences

$$a$$
, $a+d$, $a+2d$, $a+3d$

- Definition:
 - An **arithmetic sequence** is one where the **common difference** is added or subtracted to get the next term.

$$t_n = a + (n-1)d$$

• Where d is the common difference, and a is the first term.

Question 4

Consider the arithmetic sequence defined by $t_n = 4n - 3$.

Identify the common difference, first term and the 8th term.

NOTE: Read the question carefully. Sometimes, they expand the n-1 factor to confuse you.

Sub-Section: Arithmetic Recurrence Relation

What about recurrence relations for arithmetic sequence?

 $t_n = t_{n-1} + d$ where $t_1 = a$

Formula: Recurrence Relation for Arithmetic Sequence

Question 5

Consider the following n^{th} term rule for the arithmetic sequence:

$$t_n = 3 + 2n$$

Find the recurrence relation which corresponds to it.

Sub-Section: Arithmetic Mean

The Arithmetic Mean

Definition:

Arithmetic Mean of
$$a$$
 and $b = \frac{a+b}{2}$

NOTE: The arithmetic mean is the same as the so-called "normal average".

Sub-Section: Arithmetic Series

Arithmetic Series (Form 1)

Use the following formula, if we know the first term, last term and number of terms.

$$S_n = \frac{n}{2}(a+l)$$

- Where n = number of terms, a = first term and l = last term.
- $\frac{n}{2}$ can be thought of as the _____.
- a+l can be thought of as the ______.

Question 6

Consider the arithmetic sequence with $t_1 = 2$ and $t_9 = 26$.

Find S_9 .

Arithmetic Series (Form 2)

Use the following formula, if we know the first term, common difference and number of terms.

$$S_n = \frac{n}{2}(2a + d(n-1))$$

• Where n = number of terms, a = first term and d = common difference.

Question 7

Consider the arithmetic sequence with $t_n = 5n - 7$.

Find S_{11} .

Sub-Section: Geometric Sequence

Now, let's consider another type of sequence, "Geometric" sequences.

Geometric Sequences

$$a$$
, ar , ar^2 , ar^3

- Definition:
 - A Geometric sequence is one where we keep multiplying or dividing by **the common ratio** to get the next term.

$$t_n = ar^{n-1}$$

• Where r is the common ratio, and a is the first term.

NOTE: Geometric sequence is an exponential!

Question 8

Consider the geometric sequence defined by $t_n = 2 \cdot (3)^n$.

Identify the common ratio, first term and the 3rd term.

NOTE: Read the question carefully. Sometimes, they expand the n-1 power to confuse you!

Sub-Section: Geometric Recurrence Relation

What about recurrence relations for geometric sequence?

Recurrence Relation for Geometric Sequence

$$t_n = t_{n-1} \times r$$
 where $t_1 = a$

Question 9

Consider the following n^{th} term rule for the geometric sequence:

$$t_n = \mathbf{3} \cdot 2^{n-1}$$

Find the recurrence relation which corresponds to it.

Sub-Section: Geometric Mean

How do we find a geometric term between two other geometric terms?

The Geometric Mean

Definition: The **geometric mean** of two numbers a and b is the geometric term in between a and b.

a

Geometric Mean of a and $b = \sqrt{ab}$

TIP: Remember the similarity!

- Arithmetic Mean: We add the two and divide by 2.
- Geometric Mean: We multiply the two and square root.

Question 10

a. Find the geometric mean of 5 and 45.

b. Explain in words why 15 being a geometric mean makes sense.

Sub-Section: Geometric Series

Definition

Geometric Series

Definition: The sum of the first n geometric terms is given by:

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

 \blacktriangleright Where n= number of terms, a= first term and r= common ratio.

Question 11

Consider the geometric sequence with $t_n = 6 \cdot \left(\frac{1}{2}\right)^n$.

Find S_6 .

Sub-Section: Infinite Geometric Series

The Infinite Geometric Series

Definition: The sum of infinitely many geometric terms is given by:

$$S_{\infty} = \frac{a}{1-r}$$

MPORTANT: Only works when -1 < r < 1.

Question 12

Identify the first term, common ratio and hence, find the sum of the infinite series.

$$1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \cdots$$

NOTE: The common ratio must be between -1 and 1 for an infinite series to be a finite number.

Section B: Sequences & Series Exam Skills

Sub-Section: Find Arithmetic Sequence

Finding Arithmetic Sequence

- We can simply take a simultaneous equation approach.
- Or use the formula:

$$\frac{t_k - t_l}{k - l} = d, where \ k > l$$

Discussion: What does the above formula look like?

Question 13 Walkthrough.

Define the arithmetic sequence in terms of n if $t_3 = 10$ and $t_{14} = 43$.

Active Recall: Common Difference Formula

$$d =$$
_____, where $k > l$

Question 14

Define the arithmetic sequence in terms of n if $t_2 = 10$ and $t_{20} = -44$.

Sub-Section: Find Geometric Sequence

Now, Geometric Sequence!

Finding Geometric Sequence

- We can simply take a simultaneous equation approach.
- Or use the formula:

$$\left(rac{oldsymbol{t}_k}{oldsymbol{t}_l}
ight) = oldsymbol{r}^{k-l}$$
 , where $k>l$

Question 15 Walkthrough.

Define the geometric sequence in terms of n if $t_3 = 12$ and $t_6 = 96$.

Active Recall: Common Ratio Formula

$$r =$$
_____, where $k > l$

Question 16

Define the geometric sequence in terms of n if $t_2 = \frac{2}{3}$ and $t_5 = \frac{2}{81}$.

Section C: Exam 1 (20 Marks)

Question 1 (4 marks)						
Consider the arithmetic sequence $t_n = t_{n-1} + 3$ and $t_1 = 4$.						
a.	Find t_{10} . (1 mark)					
b.	Find the arithmetic mean of t_4 and t_{10} . (1 mark)					
						
	·					
	·					
	<u></u>					
	·					
c.	Find the value of x if the arithmetic mean of t_5 and t_x is 49. (2 marks)					

Question 2 (4 marks)							
It is known that two terms in a geometric sequence are $t_2 = 12$ and $t_5 = 96$.							
a. Find the value of r . (2 marks)							
b.	Hence, find t_n in terms of n . (1 mark)						
c.	Find the geometric mean of t_1 and t_5 . (1 mark)						
Space for Personal Notes							
Space for Personal Notes							

Qu	estion 3 (5 marks)						
Consider the following recursive relation:							
	$t_n = \frac{2}{3}t_{n-1}$, where $t_1 = 6$.						
a.	Define t_n in terms of n . (2 marks)						
b.	Find S_3 . (2 marks)						

c.	Find S_{∞} . (1 mark)
Qu	testion 4 (4 marks)
Coı	nsider the arithmetic sequence with $t_6 = 3$ and $S_{10} = 15$.
a.	Find the rule for the sequence in the form $t_n = a + (n-1)d$. (2 marks)

CONTOUREDUCATION

b. Find the values of t_{15} and S_{15} . (2 marks)						
Question 5 (3 marks)						
The sum of the first 4 terms of a geometric is 10 times the sum of the first 2 terms and $t_1 = \frac{3}{2}$.						
Find a rule for the series t_n .						

Section D: Tech Active Exam Skills

Calculator Commands: Generating sequences

- ➤ TI-Nspire
 - seq() and seqn() functions:

seq(Expr, Var, Low, High [, Step])

seqn(Expr(u, n) [, ListOfInitTerms [, nMax [,

Must use seqn for recursive sequences.

- E.g. Find the first 10 terms of the sequence $t_n = 2n + 5$.
- Find the first 5 terms of the sequence $t_n =$ $t_{n-1} + 3$ where $t_1 = 2$.
- NOTE: Must use the variables *u* and *n* for this function.

Mathematica

- Table[] and RecurrenceTable[] commands.
- E.g. Find the first 10 terms of the sequence $t_n = 2n + 5$.

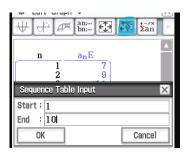
In[67]:= **Table[2n+5, {n, 1, 10}]**Out[67]= {7, 9, 11, 13, 15, 17, 19, 21, 23, 25}

E.g. Find the first 5 terms of the sequence $t_n = t_{n-1} + 3$ where $t_1 = 2$.

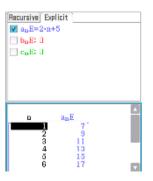
Casio Classpad

Go to Sequences from the Menu.

- Pick between Recursive or Explicit sequence definition.
- Change sequence range using:

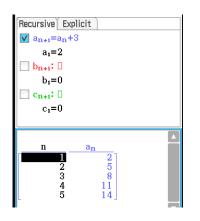


E.g. Find the first 10 terms of the sequence $t_n = 2n + 5$.



CONTOUREDUCATION

E.g. Find the first 5 terms of the sequence $t_n = t_{n-1} + 3$ where $t_1 = 2$.



<u>Calculator Commands:</u> Calculating sums

- ➤ TI-Nspire
 - G Use the big Sigma found.

E.g. Calculate the sum of the first 5 terms of the sequence $t_n = 2n + 3$.

$$\sum_{1}^{5} (2 \cdot n + 3)$$

Mathematica

- Use the Sum[] command.
- E.g. Calculate the sum of the first 5 terms of the sequence $t_n = 2n + 3$.

In[71]:= Sum[2 n + 3, {n, 1, 5}]
Out[71]= 45

Casio Classpad

- Find the big Sigma under Math2.
- E.g. Calculate the sum of the first 5 terms of the sequence $t_n = 2n + 3$.

5 ∑ (2n+3) n=1 45 □							
Math1	Line	-	√ ■	π	⇒		
Math2		e ^{III}	ln	i	90		
Math3	П	<u>d</u> []	d□□	∫	lim		
Trig	[10]			Σ			

Section E: Exam 2 (19 Marks)

Question 6 (1 mark)

Write an equation for the n^{th} term of the given arithmetic sequence.

- **A.** $a_n = 5n 2$
- **B.** $a_n = 6n + 1$
- C. $a_n = 5n 3$
- **D.** $a_n = 7n 5$

Question 7 (1 mark)

A tennis ball is dropped from a height of 10 metres. After the ball hits the floor, it rebounds to 80% of its previous height.

How high will the ball rebound after its third bounce? Round to the nearest tenth of a metre.

- A. 5.1 metres
- **B.** 6.4 metres
- **C.** 4.8 metres
- **D.** 3.2 metres

Question 8 (1 mark)

Write an equation for the n^{th} term of the given geometric sequence.

$$3,9,27,...,a_n$$

- **A.** $3\left(\frac{1}{3}\right)^{n+1}$
- **B.** $3(3)^{n-1}$
- C. $3(2)^{n-1}$
- **D.** $9(3)^{n-1}$

CONTOUREDUCATION

Question 9 (1 mark)

A sequence is generated by the rule $t_{n+1} = 2t_n + 5$, for $n \in \mathbb{N}$. If the third term of the sequence is 15, then the first term is:

- **A.** 10
- **B.** 5
- **C.** 0
- **D.** −5

Question 10 (1 mark)

Consider the sequence 10,5, 2.5, Let S_n be the sum of the first n terms of the sequence.

 $S_{\infty} - S_4$ is equal to:

- **A.** $\frac{5}{4}$
- **B.** 5
- C. $\frac{5}{2}$
- **D.** $\frac{28}{16}$

Question 11 (1 mark)

For the arithmetic sequence -12, -9, -6, ..., where $t_1 = -12$, there is an n such that $t_{n-k} + t_{n+k} = 0$ for all $k \in \mathbb{N}$. What is the value of n?

- **A.** 2
- **B.** 5
- **C.** 6
- **D.** 4

Find the sum of all numbers divisible by 7 between 200 and 600 inclusive.

Question 12 (1 mark)

A. 23503
B. 22665
C. 22743
D. 28620
Question 13 (6 marks)
In the year 2002, a shop sold 120 computers. Each following year, the shop sells 20 more computers than the year before, forming an arithmetic sequence, 120, 140, 160,
a. Find how many computers the shop sold in 2010. (1 mark)
b. Calculate the total number of computers sold by the shop from 2002 to 2015 inclusive. (2 marks)

	windows and the colling union of each assumption in dellar and the delta delta delta delta delta delta delta del
in a pa	rticular year, the selling price of each computer in dollars was equal to three times the number of ters sold in the shop that year. Find the year in which this occurred. (3 marks)
ice for	Personal Notes

Questi	ion 14 (6 marks)					
numbe	runs a farm where he keeps chickens. He plans to increase the number of chickens he has each year. The or of chickens on the farm will form a geometric sequence with a common ratio of 1.5 (where any non-result is rounded up to the nearest integer). Jacob initially has 12 chickens on the farm (year 0).					
a.						
i.	Write an expression that can be used to predict the number of chickens on the farm after n years. (1 mark)					
ii.	How many chickens will be on the farm after 2 years? (1 mark)					
iii.	After how many whole years will the number of chickens exceed 200? (1 mark)					
b. Le	t C_n be the number of chickens on the farm after n years. Write a recursive equation in terms of C_{n+1} and					
C_n	, that can be used to predict the number of chickens on the farm after n years. (1 mark)					

Jacob also has some ducks on the farm.

c.	The following are more realistic models for the number of chickens (C_n) and ducks (D_n) on Jacob's farm after
	n years:

$$C_{n+1} = 1.4C_n - 5, C_0 = 24$$

and

$$D_{n+1} = 1.8D_n - 7, D_0 = 10$$

Find the number of years it will be before the number of ducks on the farm first exceeds the number of chickens on the farm. (2 marks)

_	 		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

