

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Sequences & Series Exam Skills [1.4]

Homework

Homework Outline:

Compulsory Questions	Pg 2 - Pg 18
Supplementary Questions	Pg 19 — Pg 38

Section A: Compulsory Questions

<u>Sub-Section [1.4.1]</u>: Find Sequences From Two Terms

Question 1 Define the crithmetic sequence in terms of a	aif t = 12 and t = 20		
Define the arithmetic sequence in terms of r	. If $t_6 = 12$ and $t_{12} = 30$.		
	-		<u> </u>
Question 2			
	terms of n if $t_3 = -\frac{2}{3}$ and $t_5 =$	$-\frac{2}{27}$.	
Question 2 Define two possible geometric sequences in	terms of n if $t_3 = -\frac{2}{3}$ and $t_5 =$	$-\frac{2}{27}$.	<i></i>
	terms of n if $t_3 = -\frac{2}{3}$ and $t_5 =$	$-\frac{2}{27}$.) <u>)</u>

Question 3	
Let g_n be a geometric sequence and a_n be an arithmetic sequence.	
It is known that $g_1 = a_1 = 2$ and that $g_2 = a_2$ and $g_3 = a_4$.	
Describe g_n and a_n in terms of n .	

Space for Personal Notes

<u>Sub-Section [1.4.2]</u>: Apply Recurrence Relation To Different Types of Sequences

 \blacktriangleright We define the Fibonacci Sequence f_t via the following recursive definition.

$$f_1 = f_2 = 1$$

$$f_{n+1} = f_n + f_{n-1}$$
 for $n \ge 2$

Question	4
----------	---

a. Find f_5 .

b. Find $f_5 + f_6 + f_7 + f_8$.

Qı	uestion 5	
a.	Show that f_n is not an arithmetic sequence.	
h.	Show that f_n is not a geometric sequence.	
ο.	Show that j_n is not a geometric sequence.	
Sc	pace for Personal Notes	

Question 6

Let $\phi = \frac{1+\sqrt{5}}{2}$ and $\psi = \frac{1-\sqrt{5}}{2}$ be roots of the equation $x^2 = x + 1$.

a. Show that $\phi^{n+1} = \phi^n + \phi^{n-1}$ (Hint: Use the fact that ϕ satisfies the equation $x^2 = x + 1$).

b. Show that $a\phi^{n+1} + b\psi^{n+1} = a(\phi^n + \phi^{n-1}) + b(\psi^n + \psi^{n-1})$ for all real a, b.

CONTOUREDUCATION

c.	Hence, show that $f_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$.

Sub-Section: Exam 1 Questions

Question 7 (5 marks)

Consider an arithmetic sequence a_n with the following properties:

$$a_1 = 5$$
, $a_2 = 8$, $a_p = 23$

a. In closed form, $a_n = b \times n + d$. Find the values of b and d. (2 marks)

b. Hence, find the value of p. (1 mark)

c.	Let $s_n = \sum_{i=1}^n a_i$ be the series corresponding to the sequence a_n .
	Find the value of s_{10} . (2 marks)

Question 8 (5 marks)

Consider the following sequence, $g_n = 2 \times \left(-\frac{1}{3}\right)^n$.

a. Evaluate the geometric mean of g_1, \ldots, g_9 . (2 marks)

CONTOUREDUCATION

b.	Evaluate $g_3 + g_4 + \dots (2 \text{ marks})$
c.	The arithmetic mean of g_1, \ldots, g_n tends towards some number as $n \to \infty$. Find that number. (1 mark)
Qu	uestion 9 (3 marks)
	t a_n and g_n be an arithmetic and geometric sequence respectively.
Sh	ow that if $a_1 = g_1$, $a_2 = g_2$ and $a_3 = g_3$, then $a_n = g_n = a_1$ for all natural numbers n .

Question 10 (4 marks)

Consider a geometric sequence $g_n = a \times r^n$.

a. Show that $g_1 + g_2 + ... + g_n = \frac{a(r - r^{n+1})}{1 - r}$. (2 marks)

b. Use the above formula to evaluate, $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{10}}$. (1 mark)

c. Explain why -1 < r < 1 for us to be able to evaluate the series $g_1 + g_2 + \dots$ (1 mark)

Question 11 (3 marks)			
Consider the sequence $a_n = 2n + 1$, and the derived sequence $b_1 = 1$ and $b_n = b_{n-1} + a_n$ for $n \ge 2$.			
a. Express b_n in terms of s_n . (2 marks)			
b. Hence, or otherwise find b_{10} . (1 mark)			
Space for Personal Notes			

Sub-Section: Exam 2 Questions

Question 12 (1 mark)

The sequence with consecutive entries 1, -2, 4 could be:

- A. An arithmetic sequence.
- **B.** A geometric sequence.
- C. Neither an arithmetic nor a geometric sequence.
- **D.** Either an arithmetic or a geometric sequence.

Question 13 (1 mark)

Consider the geometric sequence, g_n with the following entries, $g_3 = 4$ and $g_5 = 16$.

A possible closed form for g_n is:

- **A.** $g_n = 6n 14$
- **B.** $g_n = 2 \times 2^n$
- C. $g_n = 6n 2$
- **D.** $g_n = -\frac{1}{2} \times (-2)^n$

Question 14 (1 mark)

The infinite sum, $10 - 1 + \frac{1}{10} - \frac{1}{100} + \dots$ is equal to:

- A. $\frac{100}{11}$
- **B.** $\frac{100}{9}$
- C. $-\frac{1000}{9}$
- **D.** $-\frac{10}{9}$

Question 15 (1 mark)

The value of 1 + 2 + ... + 100 is:

- **A.** 5000
- **B.** 10100
- **C.** 10000
- **D.** 5050

Question 16 (1 mark)

Consider the sequence $a_n = 2^n + 3n + 1$, the corresponding series to this sequence has a closed form of:

- **A.** $s_n = 5^{n+1} 5$
- **B.** $s_n = \frac{5n^2 + 7n}{2}$
- C. $s_n = 2^{n+1} + \frac{3n^2 + 5n 4}{2}$
- **D.** $s_n = 2^n + \frac{3n^2 + 5n}{2}$

Question 17 (9 marks)

An annuity is an annual payment of d dollars at the start of every year for d years.

Due to inflation \$1 dollar today is worth \$1.03 dollars exactly one year from now, thus the present value of an annuity, p (i.e., how much the annuity p is worth today) is equal to:

$$p = d + d \times 1.03^{-1} + d \times 1.03^{-2} + ... + d \times 1.03^{n-1}$$

For this question assume the current date is January first. Thus a payment at the start of a year usually pays off immediately.

a. In today's dollar, how much is \$1000 dollars worth one year from now? (1 mark)

In today's dollar, how muc decimal places. (1 mark)	ch is \$1000 dollars worth 10 years from now? Give your answer correct	to 2
For this part of the question	on you may use the identity $1 + x + x^2 + + x^n = \frac{1 - x^{n+1}}{1 - x}$.	
		y year
_	The state of the s	year f
		startir
	i. Calculate the present the next 10 years. Give	For this part of the question you may use the identity $1 + x + x^2 + + x^n = \frac{1 - x^{n+1}}{1 - x}$. Calculate the present value of an annuity that pays \$2000 dollars each year at the start of ever the next 10 years. Give your answer correct to 2 decimal places. (2 marks)

d.	Express in closed form the present value of an annuity that pays d dollars every 2 years, at the start of the			
express in closed form the present value of an annuity that pays $\mathfrak{a}a$ dollars every 2 years, at the start of the year for $2n$ years. (2 marks)				
e.	A perpetuity is an annuity that pays d dollars at the start of a year every year, forever. Calculate the present value of a perpetuity that pays 0 dollars. (1 mark)			
Qu	nestion 18 (10 marks)			
Co	nsider the following arithmetic sequence, a_n , with $a_1 = 2$ and $a_n = ba_{n-1} + c$.			
Co	insider the following arithmetic sequence, a_n , with $a_1 - 2$ and $a_n - ba_{n-1} + c$.			
a.	For what values of b is a_n an arithmetic sequence? (1 mark)			

$$a_3 = \frac{1}{2}$$
, $a_5 = \frac{1}{8}$

c. Let b = 2 and c = -1.

i. Find a_3 .	(1 mark)
-----------------	----------

ii.	Find $a_1 + a_2 + a_3$. (1 mark)

Let	$ab = \frac{1}{2}$ and $c = 0$.
i.	Find the geometric mean of $a_3, \ldots a_{13}$. (2 marks)
ii.	Let m_n denote the geometric mean of a_1, \ldots, a_n . Find the smallest possible number q , such that $m_n \leq q$ for all natural numbers n . (1 mark)

Section B: Supplementary Questions

<u>Sub-Section [1.4.1]</u>: Find Sequences From Two Terms

Question 19	1
Define the arithmetic sequence in terms of n if $t_3 = -10$ and $t_{13} = 10$.	

Question 20

Define a possible geometric sequences in terms of n if $t_4 = \frac{1}{4}$ and $t_7 = \frac{27}{4}$.

A	21
Onestion	21

Consider the arithmetic, a_n sequence with the following properties, $a_3 = 8$, $a_6 = -\frac{5}{2}$.

 g_n is a geometric sequence with the property that $g_3=a_3$ and $g_5=a_5$.

Find g_n in terms of n.

Question 22	
Consider the following sequence, $a_n = b^n + c + dn$.	
It is known that $a_1 = 0$, $a_2 = 1$ and $a_3 = 4$.	
Find the values of b , c and d .	

Space for Personal Notes		

<u>Sub-Section [1.4.2]</u>: Apply Recurrence Relation To Different Types of Sequences

Question 23
Consider the sequence a_n , with the property that $a_3 = -5$ and $a_n = 2a_{n-1} + 1$.
a. Find a_1 .
b. Now assume that $a_1 = b$ and $a_n = 2a_{n-1} + 1$. Find a value of b such that $a_n = b$ for all values of n .
Space for Personal Notes

Λ.		24
()1	nestion	7.4

Consider the sequence defined by the following recursive relationship:

$$f_{n+1} = \frac{f_n + f_{n-1}}{4}$$

Space for	Personal	Notes
-----------	----------	-------

Question 25

Consider the Fibonacci Sequence, f_n defined as such:

$$f_1 = f_2 = 1$$

$$f_{n+1} = f_n + f_{n-1}$$
 for $n \ge 2$

Now consider the sequence $a_n = a2^n$.

Show that for a suitable value of a, $a_n > f_n$ for all values of n.

Question 26

Find a sequence, a_n that satisfies the recursive relationship, $a_n = 4a_{n-1} + 2a_{n-2} - 12a_{n-3} - 9a_{n-4}$, as well as the conditions:

$$a_2 = 2 \text{ and } a_3 = 4$$

Hint:
$$((x-1)^2 - 4)^2 = x^4 - 4x^3 - 2x^2 + 12x + 9$$

Sub-Section: Exam 1 Questions

Question 27 (3 marks)

Consider the arithmetic sequence, a_n with the following properties:

$$a_5 = 7$$
 and $a_8 = 19$

a. Find $a_2 - a_1$. (1 mark)

b. Find a_1 . (1 mark)

c. Hence, find a_n for any natural number n. (1 mark)

Question 28 (4 marks)

Consider the following geometric progression, $b_n = 2 \times \left(-\frac{2}{3}\right)^{n-3}$.

a. Find the geometric mean of b_1, b_2, \ldots, b_5 . (2 marks)

b. Evaluate $5b_1 - 5b_2 + 5b_3 + \dots (2 \text{ marks})$

Question 29 (4 marks)	
Consider a positive sequence a_n with $a_n > 0$ for all natural numbers n .	
a. If $a_1 + a_2 + \ldots + a_n < 5$ for all values of n , show that there exists an integer $a_n < 1$. (3 marks)	k, such that for all $n > k$,
b. Explain why a_{1000} is not necessarily less than 0.1. (1 mark)	
Space for Personal Notes	

Question 30 (4 marks)
Consider a sequence, $\phi_n = ab^n + cd^n$, defined by the following recursive relationship:
$\phi_{n+1} = 5\phi_n - 6\phi_{n-1}$
If $\phi_2 = 7$ and $\phi_3 = 17$, find possible values of a, b, c and d .
Conso for Dorsonal Notes
Space for Personal Notes

Question 31 (5 marks)
Consider the following two sequences:
$a_n = 3n - 1$ and $b_n = 3 \times 2^{-n}$
a. Express the sequence $c_n = ba_n$ in terms of n . (1 mark)
b. The arithmetic mean of $a_1, \ldots a_p$ is 17.
i. Find the value of p . (1 mark)

Eva	aluate $c_1 + c_2 + \dots (1 \text{ mark})$

Sub-Section: Exam 2 Questions

Question 32 (1 mark)

Consider the following sequence a_n defined recursively.

$$a_1 = 2$$

$$a_2 = 3$$

$$a_n = a_{n-1} + a_{n-2}$$

Evaluate a_{10} .

- **A.** 55
- **B.** 89
- **C.** 144
- **D.** 233

Question 33 (1 mark)

Consider the geometric sequence, a_n .

It is known that $a_1 + a_2 + a_3 + \ldots = 4$ and that $a_1 = 2$.

The geometric mean of $a_1, a_2 \dots a_8$ is:

- **A.** $\frac{1}{4\sqrt{2}}$
- **B.** $\frac{1}{32}$
- C. $\frac{1}{1048576}$
- **D.** $\frac{1}{2}$

ONTOUREDUCATION

Question 34 (1 mark)

The sequence with consecutive entries 1, -3, 5, -7 could be:

- **A.** An arithmetic sequence.
- **B.** A geometric sequence.
- C. Either an arithmetic or a geometric sequence.
- **D.** Neither an arithmetic nor a geometric sequence.

Question 35 (1 mark)

How many entries are sufficient to uniquely determine all the entries in an arithmetic progression?

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 4

Question 36 (1 mark)

Let a_n be an arithmetic sequence and let $b_n = 2^n$ be a geometric sequence.

Define the sequence $c_n = b_{an}$.

The arithmetic mean of $a_1, a_2, \ldots a_p$ is 3.

The geometric mean of c_1, c_2, \ldots, c_p is:

- **A.** 9
- **B.** 5
- **C.** 8
- **D.** Impossible to tell with the current information.

Question 37 (9 marks)

An island has 10 fertile immortal monkeys. Every year, each pair of two fertile monkeys produces another monkey.

Let m_n denote the population of monkeys on the Island at the start of the year n.

a. Show that $m_n = 10 \times \left(\frac{3}{2}\right)^{n-1}$. (1 mark)

Hint: For this question simply approximate all answers using series and round at the end of calculations

b. At the end of every year, 20 additional sterile immortal monkeys (they can't reproduce) are introduced.

|--|

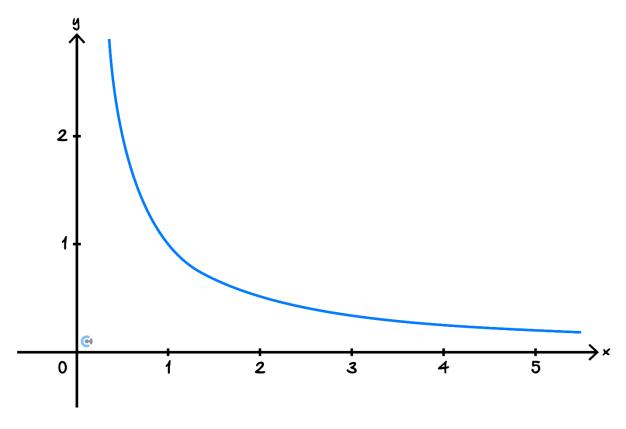
_	
Emper	end of each year, monkeys who have been on the Island for at least a year pay their taxes to the Ja or (the initial monkeys pay tax at the end of the first year). At the end of 10 years how many time le Emperor received a tax form? (3 marks)

Question 38 (9 marks)

Consider the harmonic sequence, $h_n = \frac{1}{n}$ and its associated series $H_n = \sum_{i=1}^n h_i$.

a. Find H_5 . (1 mark)

i. Show that $h_{2^{n}+1} + h_{2^{n}+2} + \ldots + h_{2^{n+1}} > \frac{1}{2}$. (2 marks)


ii. Hence, or otherwise find the smallest value of n such that $H_n > 3$. (1 mark)

iii. Argue why for all real m there exists some n such that $H_n > m$. (1 mark)

CONTOUREDUCATION

c. The area bounded by the graph $y = \frac{1}{x}$, the x-axis, and the lines x = 1, x = a for a > 1 is equal to $\log_e(a)$.

The graph of $y = \frac{1}{x}$ is shown below.

Draw a region with an area H_5 and use that region to argue why for all $m \in R$ there exists an n such that $H_n > m$. (4 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

