

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Sequence and Series [1.3]

Workbook

Outline:

Pg 19-29

Introduction to Sequences and Series

Pg 2-8

- Sequences
- **Recurrence Relations**
- Introduction to Series

Arithmetic Sequence and Series

- Pg 9-18 Introduction to Arithmetic Sequence
- Arithmetic Recurrence Relation
- Arithmetic Mean
- **Arithmetic Series**

Geometric Sequence and Series

- Geometric Sequence
- Geometric Recurrence Relation
- Geometric Mean
- Geometric Series
- Infinite Geometric Series

Rei - Lontacts

- · Reia Contoureducation.com.au
- · 0490198272 (whatsapp/messages)

Section A: Introduction to Sequences and Series

Sub-Section: Sequences

Sequences

Consider Samuel, our beloved Contour Tutor.

- Lets say he eats a chocolate bar on the first day.
- The next day, he eats two chocolate bars.
- How many chocolate bars do you think he eats on the third day?
- Hands up if you think it's 3 chocolate bars!
 - You guys have taken an arithmetic approach!
- Hands up if you think it's 4 chocolate bars!
 - You guys have taken a **geometric** approach!
 - We will consider the two types of sequences today!

CONTOUREDUCATION

Sequences

ti, ti, ts

- Definition: A sequence is an ordered list of numbers following a certain pattern.
- It is a furction of the order ...

Question 1 Walkthrough.

Construct the first 3 terms for the sequence given by $t_n = 2n + 1$.

$$t_1 = 2(1) + 1 = 3$$

$$t_2 = 2(2) + 1 = 5$$

$$t_3 = 2(3)(1) = 7$$

NOTE: t_n stands for the n^{th} term. Eg: For t_3 , our value of n is equal to 3.

ALSO NOTE: This was a sequence of odd numbers!

The sequence is defined by $t_n = 2^n + 1$. Identify the term number for which t_n equals 9.

$$f_{n}=2^{n}+1$$
 $9=2^{n}+1$
 $2^{n}=8$

Sub-Section: Recurrence Relations

What if we define the term t_n with respect to the previous term (t_{n-1})

Definition

Recurrence Relations

- Definition:
 - lacktriangledown A recurrence relation is when we define a term (t_n) , in terms of the previous one (t_{n-1}) .
 - @ Recurrence relations generate sequences of the form:

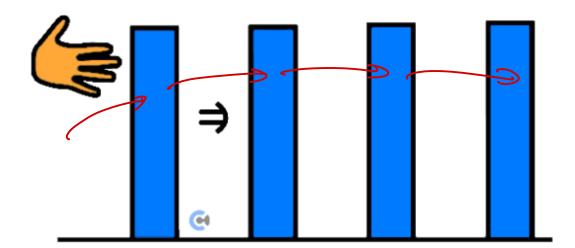
$$t_n = f(t_{n-1})$$
 where $t_1 = a$

Or

$$t_{n+1} = f(t_n)$$
 where $t_1 = a$

<u>Analogy</u>: Recurrence Relations

It's like knocking off a sequence of dominos!



We focus on the **<u>Relation Ship</u>** tween the two terms (dominos).

Consider the following recurrence relation.

$$t_n = 3t_{n-1} + 2t_1 = 2$$

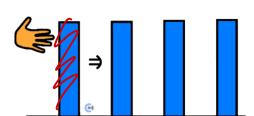
State the value of t_3 .

$$t_2 = 3(2) + 2 = 8$$

$$t_3 = 3(8) + 2 = 26$$

Why do we always need a first term?

Analogy: Reason for why recurrence relations always need a first term.



- Can you knock off any of these dominos without knocking over the first one?
- > Similarly, how can we solve for any term in recurrence relation without the first term?

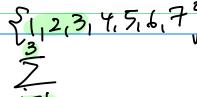
 It's impossible! → Pule → First term

Sub-Section: Introduction to Series

What does the word "series" mean?

Series

P1,23,43 = 10



2 SUM.

Definition:

 \bigcirc A series is the sum of the first n terms of a sequence.

$$S_n = \sum_{i=1}^n t_i$$

Question 4 Walkthrough.

Consider the sequence given by $t_n = 3n - 4$.

 $= t_1 + t_2 + t_3 + t_4$ $= l^2 + 2^2 + 3^2 + 4^2$

Evaluate S_2 .

$$= \sum_{n=1}^{2} 3n - 4$$

$$=t_1+t_2$$

Consider the sequence given by $t_n = 2n + 2$.

Evaluate S_4 .

$$S_{9} = \sum_{N=1}^{9} 2n+2$$

$$= t_{1}+t_{2}+t_{3}+t_{9}$$

$$= 9+6+8+10$$

$$= 28$$

Key Takeaways

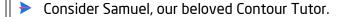
- ☑ Sequence follows a certain pattern.
- ☑ Recurrence relation is a relationship between the next term and the current term.
- lacksquare Series is the sum of the first n terms.

Section B: Arithmetic Sequence and Series

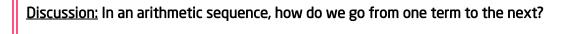
Sub-Section: Introduction to Arithmetic Sequence

Let's go back to the previous context

Arirthmetic Sequence



- He ate one chocolate bar on the first day.
- The next day, he ate two chocolate bars.
- Arithmetic sequence suggests Sam eats 3 chocolate bars on the third day!



Add the same number (minus)

Arithmetic Sequences

Definition

An arithmetic sequence is one where the common difference is added or subtracted to get the next term.

$$t_n = a + (n-1)d$$
 common difference

• Where d is the common difference, and a is the first term.

Discussion: Why do we add (n-1)d instead of nd? How many differences do we add from t_1 to t_n

First term > Zero td Second term > one to

Question 6 Walkthrough.

Consider the arithmetic sequence defined by $t_n = 12 + 6(n-1)$.

Identify the common difference, first term and the 4th term.

$$t_{1}$$
 common and t_{2} $t_{3} = 12 + 6 \times (5 - 1)$

$$= (2 + 6 \times 4)$$

$$= (2 + 2 + 6)$$

$$= 36$$

Consider the arithmetic sequence defined by $t_n = -1 + 6n$.

Identify the common difference first term and the 8th term.

$$t_1 = -(+60)$$
 $t_1 = 5$

$$n=8$$
 $t_8 = -|+6(8)$
 $= -|+48$
 $= 47$

NOTE: Read the question carefully. Sometimes, they expand the n-1 factor to confuse you.

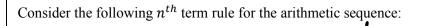
What about recurrence relations for arithmetic sequence?

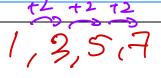
<u>Discussion:</u> What must be the relationship between the current term (t_n) and the previous term (t_{n-1}) for an arithmetic sequence?

Formula: Recurrence Relation for Arithmetic Sequence

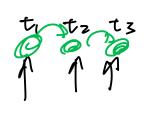
$$t_n = t_{n-1} + d$$
 where $t_1 = a$

Question 8





Find the recurrence relation which corresponds to it.

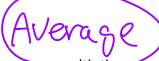


$$t_1 = t_1 - 1 - 3$$

Sub-Section: Arithmetic Mean

What do we mean by the Arithmetic Mean?

Exploration: Finding arithmetic mean.



 \blacktriangleright Consider three terms of an arithmetic sequence with the common difference of d.

$$t_1 = a$$
, $t_2 = a + d$ and $t_3 = a + 2d$.

- \blacktriangleright Say that t_2 is an arithmetic mean (average) of t_1 and t_3 .
- ightharpoonup Try finding the sum of t_1 and t_3 .

$$t_1 + t_3 =$$

What should we do to $t_1 + t_3$ to find t_2 ?

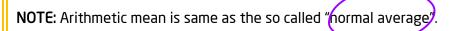
$$t_2=\frac{t_1+t_3}{2}$$

Definition

The Arithmetic Mean

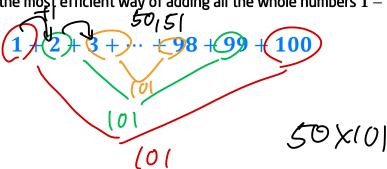
Definition:

Arithmetic Mean of a and $b = \frac{a + b}{2}$



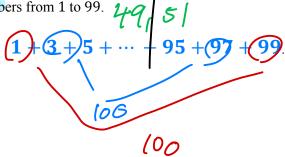
21,2,3,4,53

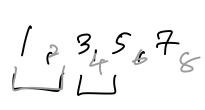
<u>Discussion:</u> What would be the most efficient way of adding all the whole numbers 1-100?

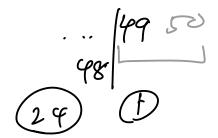


Question 9

Find the sum of all the odd numbers from 1 to 99. 449







Arithmetic Series (Form 1)

Use the following formula, if we know the first term, last term and number of terms.

$$S_n = \frac{n}{2}(a+l)$$

- Where n =number of terms, a = first term and l = last term.
- $\frac{n}{2}$ can be thought as the Number of pairs
- a+l can be thought as the <u>Sum of each</u> pair

Question 10 Walkthrough.

Consider the arithmetic sequence with $t_1 = -5$ and $t_4 = 10$

Find S_4 .

$$S_{n} = \frac{N}{2} (atl)$$

$$E_{l} t_{n}$$

$$S_{4} = \frac{4}{2}(-5+10)$$
= 2(5)
= 10

Consider the arithmetic sequence with $t_1 = 3$ and $t_9 = 3$

Find
$$S_9$$
.

$$S_{n} = \frac{n}{2}(a+l)$$

$$= \frac{9}{2}(3+19)$$

$$= \frac{9}{2} \times 22$$

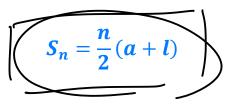
$$= 9 \times 11$$

$$= 99$$

Now let's generalise it for all arithmetic sequences!

Exploration: Arithmetic series for when we don't know the last term (l).

- Recall the series formula-
- Which term would $\it l$ be? $\it t_{\it l}$



 \blacktriangleright How can we define t_n for an arithmetic sequence?

On the space below, substitute l = a + d(n - 1) to the series formula!

and

ONTOUREDUCATION

Arithmetic Series (Form 2)

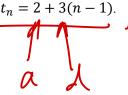
Use the following formula, if we know the first term, common difference and number of terms.

$$S_n = \frac{n}{2}(2a + d(n-1))$$

Where n = number of terms, a = first term and d = common difference.

Question 12 Walkthrough.

Consider the arithmetic sequence with $t_n = 2 + 3(n - 1)$. Find S_{10} .



$$S_{10} = \frac{10}{2}(2\alpha + d(10 - 1))$$

$$= 5(2(2) + 3(9))$$

$$= 5(4+27)$$

$$= 5x31 \neq (55)$$

$$t_{10} = 2 + 369$$

$$= 29$$

$$S_{10} = \frac{16}{2}(2+2)$$

$$= 5(31)$$

$$= 155$$

Consider the arithmetic sequence with $t_n = -2 + \frac{1}{3}(n-1)$. Find S_{13} .

$$S_{13} = \frac{13}{2} (2\alpha + d(n-1))$$

$$= \frac{(3)}{2} (2(-2) + \frac{1}{3} (12))$$

$$= \frac{(3)}{2} (-4 + 4)$$

$$= \frac{(3)}{2} \times 0$$

$$= 0$$

Key Takeaways

- Arithmetic sequence has a common difference between the next term and the current one.
- \checkmark Arithmetic sequence is given by $t_n = a + (n-1)d$.
- \checkmark Arithmetic mean of a and b is $\frac{a+b}{2}$.
- \checkmark Arithmetic sum is given by $\frac{n}{2}(a+l)$ or $\frac{n}{2}(2a+(n-1)d)$.

Section C: Geometric Sequence and Series

Sub-Section: Geometric Sequence

Now let's consider another type of sequence, "Geometric" sequences.

Arirthmetic Sequence

- Remember again
- He ate one chocolate bar on the first day?
- The next day, he ate two chocolate bars.

Geometric sequence will suggest that Sam eats 4 chocolate bars on the 3^{rd} day!

<u>Discussion:</u> In geometric sequence, how do we go from one term to the next?

Multiply. by the same number

CONTOUREDUCATION

Definition

Geometric Sequences

- Definition:
 - A Geometric sequence is one where we keep multiplying or dividing by **the common ratio** to get the next term.

ar, ar^2 , ar^3

$$t_n = \alpha r^{\frac{h-1}{h}}$$

ullet Where r is the common ratio, and a is the first term.

common vatio

<u>Discussion:</u> Why do we have a power of n-1 instead of n? How many ratios do we multiply from t_1 to t_n ?

Question 14 Walkthrough.

Consider the geometric sequence defined by $t_n = 2 \cdot \left(\frac{1}{3}\right)^{n-1}$.

Identify the common ratio, first term and the 4th term.

$$t_1 = 2x(\frac{1}{3})^{\circ} = 8x | = 2$$

$$t_4 = 2x(\frac{1}{3})^{4-1} = 2x(\frac{1}{3})^{3}$$

$$= \frac{2}{27}$$

NOTE: Geometric sequence is an exponential!

only uses whole number

exponentia

Question 15

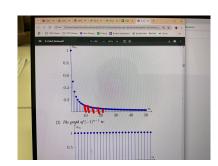
Consider the geometric sequence defined by $t_n = 6 \cdot (2)^n$.

Identify the common ratio, first term and the 2nd term.

2

12

24



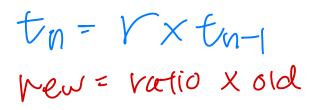
NOTE: Read the question carefully. Sometimes, they expand the n-1 power to confuse you!

Sub-Section: Geometric Recurrence Relation

La term before

What about recurrence relations for geometric sequence?

<u>Discussion:</u> What must be the relationship between the current term (t_n) and the previous term (t_{n-1}) for a geometric sequence?



Recurrence Relation for Geometric Sequence

$$t_n = t_{n-1} \times r$$
 where $t_1 = a$

Ouestion 16

Consider the following n^{th} term rule for the geometric sequence φ

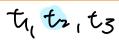
$$t_n = 2 \cdot \boxed{4^{n-1}}$$

Find the recurrence relation which corresponds to it.

Sub-Section: Geometric Mean

How do we find a geometric term between two other geometric terms?

Exploration: Finding geometric mean.



Consider three terms of a geometric sequence with the common ratio of r.

$$t_1 = a$$
, $t_2 = ar$ and $t_3 = ar^2$

Geometric mean simply means a ______ Middle tom of 2 terms

Here we can say t_2 is a geometric mean (average) of t_1

Find the product of t_1 and t_3 .

What should we do to $t_1 \cdot t_3 = a^2 r^2$ to find $t_2 = ar$?

$$t_2 = \sqrt{t_1 \times t_3} \qquad \qquad \psi \\ t_1 \times t_3 = t_2^2$$

The Geometric Mean

Definition: The **geometric mean** of two numbers a and b is the geometric term in between a and b.

$$a \sqrt{ab}$$
 b

Geometric Mean of a and $b = \sqrt{ab}$

TIP: Remember the similarity!

- Arithmetic Mean: We add the two and divide by 2.
- Geometric Mean: We multiply the two and square root.

Question 17

a. Find the geometric mean of 5 and 20.

b. Explain in words why 10 being a geometric mean makes sense.

ratio of 2 and home 10 is the Middle of the garmetric sequence containing 5,20

Sub-Section: Geometric Series

Geometric Series

Definition: Sum of first n geometric terms is given by:

$$S_n = \frac{\sqrt[n]{n}}{\sqrt[n]{n}-1}$$

Where n = number of terms, a = first term and r = common ratio.

Question 18 Walkthrough.

Consider the geometric sequence $t_n = 2 \cdot (3)^{n-1}$.

$$a = t_1 = 2 \cdot (3)$$

Find S_4 .

estion 18 Walkthrough.

Insider the geometric sequence
$$t_n = 2 \cdot (3)^{n-1}$$
.

$$C = t_1 = 2 \cdot (3)^{n-1}$$

$$= 2 \times 3^{\circ}$$

$$= 2 \times 1 = 2$$

$$= 2 \times 1 = 2$$

$$= 2 \times (8! - 1)$$

$$= 2 \times (8! - 1)$$

$$= 86$$

Question 19

Consider the geometric sequence with $t_n = 4 \cdot \left(\frac{1}{2}\right)^{n-1}$. $\alpha = t_1 = 4 \times \left(\frac{1}{2}\right)^{n} = 4$

Find S_5 .

$$S_{5} = \frac{\alpha(r^{N-1})}{r-1}$$

$$= \frac{4(\frac{1}{2})^{5}-1}{\frac{1}{2}-1}$$

$$= \frac{4 \times (\frac{1}{32}-1)}{-\frac{1}{2}} = 8(\frac{31}{32})$$

$$= \frac{31}{4}$$

VCE Specialist Mathematics ½

mutiply (

Sub-Section: Infinite Geometric Series

add

What does infinite geometric series even mean?

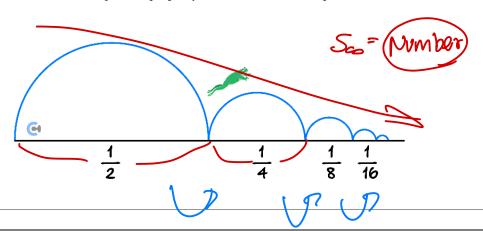
Context

Imagine a frog jumping from one end of the pond to the other.

Here's the catch!

The frog always jumps half of remaining distance.

The frog always jumps half of remaining distance.



Construct a geometric sequence for which its terms represent the % of the distance between the two ends of the pond that the frog covers in his n^{th} jump.

$$\alpha = t_1 = \frac{1}{2}$$

$$\gamma = \frac{1}{2}$$

tn===x(=)n-1

CONTOUREDUCATION

NOTE: Notice how, even if the frog jumps infinitely, its distance covered is still a finite number.

- Even if we add infinitely many geometric terms, the series(sum) can still be finite.
- This is called "Zeno's Paradox".

NOTE: If the common ratio is higher than 1 like the above discussion, the infinite series will not be a finite number.

The Infinite Geometric Series

Definition: The sum of infinitely many geometric terms is given by

$$S_{\infty} = \frac{a}{1-r}$$

• IMPORTANT: Only works when -1 < r < 1.

Question 21 Walkthrough.

Identify the first term, common ratio and hence find the infinite series.

$$C = \frac{1}{100}$$

$$C = \frac{1}{100}$$

$$C = \frac{1}{100}$$

$$S_{\infty} = \frac{a}{1 - V} = \frac{1}{1 - \frac{1}{10}} = \frac{1}{9/10} = \frac{10}{9}$$

Identify the first term, common ratio and hence find the infinite series.

$$1 - \frac{2}{3} + \frac{4}{9} - \frac{8}{27} + \cdots$$

$$r = -\frac{2}{3}$$

$$S_{\infty} = \frac{\alpha}{1-V} = \frac{1}{1+\frac{2}{3}} = \frac{1}{5/3} = \frac{3}{5}$$

NOTE: The common ratio must be between -1 and 1 for an infinite series to be a finite number.

Key Takeaways

- ☑ Geometric sequence has a common ratio between the next term and the current one.
- \square Geometric sequence is given by $t_n = ar^{n-1}$.
- lacktriangledown Geometric mean of a and b is \sqrt{ab} .
- ✓ Geometric sum is given by $\frac{a(r^{n}-1)}{r-1}$.
- ✓ Infinite geometric sum is given by $\frac{a}{1-r}$, where -1 < r < 1.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

1-on-1 Maths Consults

What Are 1-on-1 Maths Consults?

- Individual 30-minute consultations via Zoom with a Contour tutor, where you can ask questions, clarify doubts, get tips, advice, and support in a one-on-one format.
- Complimentary (yes, entirely free) with your Contour enrolment (as long as you're enrolled in a Maths subject at Contour). You can book up to a week in advance.

SAVE THE LINK. AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link bit.ly/maths-consults

