

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Sequences and Series [1.3]

Workbook

Outline:

Pg 19-29

Introduction to Sequences and Series

Pg 2-8

- Sequences
- **Recurrence Relations**
- Introduction to Series

<u>Arithmetic Sequence and Series</u>

- Pg 9-18
- Introduction to Arithmetic Sequence
- Arithmetic Recurrence Relation Arithmetic Mean
- **Arithmetic Series**

Geometric Sequence and Series

- Geometric Sequence
- Geometric Recurrence Relation
- Geometric Mean
- Geometric Series
- Infinite Geometric Series

Section A: Introduction to Sequences and Series

Sub-Section: Sequences

Sequences

Consider Samuel, our beloved Contour Tutor.

- Lets say he eats a chocolate bar on the first day.
- The next day, he eats two chocolate bars.
- How many chocolate bars do you think he eats on the third day?
- Hands up if you think it's 3 chocolate bars!
 - You guys have taken an arithmetic approach!
- Hands up if you think it's 4 chocolate bars!
 - You guys have taken a geometric approach!
 - We will consider the two types of sequences today!

Sequences

$$t_n = f(n)$$

- Definition: A sequence is an ordered list of numbers following a certain pattern.
- lt is a ______of the order_____.

Question 1 Walkthrough.

Construct the first 3 terms for the sequence given by $t_n = 2n + 1$.

NOTE: t_n stands for the n^{th} term. Eg: For t_3 , our value of n is equal to 3.

ALSO NOTE: This was a sequence of odd numbers!

Question	2

The sequence is defined by $t_n = 2^n + 1$. Identify the term number for which t_n equals 9.

Sub-Section: Recurrence Relations

What if we define the term t_n with respect to the previous term (t_{n-1}) ?

Recurrence Relations

- Definition:
 - lacktriangledown A recurrence relation is when we define a term (t_n) , in terms of the previous one (t_{n-1}) .
 - Recurrence relations generate sequences of the form:

$$t_n = f(t_{n-1})$$
 where $t_1 = a$

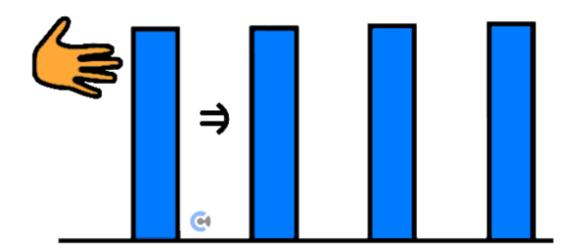
Or

$$t_{n+1} = f(t_n)$$
 where $t_1 = a$

lt must always include a _______

Analogy: Recurrence Relations

It's like knocking off a sequence of dominos!



We focus on the _____between the two terms (dominos).

Question 3

Consider the following recurrence relation.

$$t_n = 3t_{n-1} + 2$$
, $t_1 = 2$

State the value of t_3 .

Why do we always need a first term?

<u>Analogy</u>: Reason for why recurrence relations always need a first term.

- Can you knock off any of these dominos without knocking over the first one?
- Similarly, how can we solve for any term in recurrence relation without the first term? It's impossible!

Sub-Section: Introduction to Series

What does the word "series" mean?

Series

Definition

- Definition:
 - ullet A series is the sum of the first n terms of a sequence.

$$S_n = \sum_{i=1}^n t_i$$

Question 4 Walkthrough.

Consider the sequence given by $t_n = 3n - 4$.

Evaluate S_2 .

Question 5

Consider the sequence given by $t_n = 2n + 2$.

Evaluate S_4 .

Key Takeaways

- ☑ Sequence follows a certain pattern.
- **M** Recurrence relation is a relationship between the next term and the current term.
- lacksquare Series is the sum of the first n terms.

Section B: Arithmetic Sequence and Series

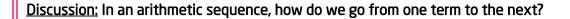
Sub-Section: Introduction to Arithmetic Sequence

Let's go back to the previous context

Arirthmetic Sequence

Consider Samuel, our beloved Contour Tutor.

- He ate one chocolate bar on the first day.
- The next day, he ate two chocolate bars.
- Arithmetic sequence suggests Sam eats 3 chocolate bars on the third day!



Arithmetic Sequences

$$a$$
, $a+d$, $a+2d$, $a+3d$

- Definition
 - An **arithmetic sequence** is one where the **common difference** is added or subtracted to get the next term.

$$t_n = a + (n-1)d$$

 \bullet Where d is the common difference, and a is the first term.

<u>Discussion:</u> Why do we add (n-1)d instead of nd? How many differences do we add from t_1 to t_n

Question 6 Walkthrough.

Consider the arithmetic sequence defined by $t_n = 12 + 6(n - 1)$.

Identify the common difference, first term and the 5th term.

Consider the arithmetic sequence defined by $t_n = -1 + 6n$.

Identify the common difference, first term and the 8^{th} term.

NOTE: Read the question carefully. Sometimes, they expand the n-1 factor to confuse you.

Sub-Section: Arithmetic Recurrence Relation

What about recurrence relations for arithmetic sequence?

<u>Discussion:</u> What must be the relationship between the current term (t_n) and the previous term (t_{n-1}) for an arithmetic sequence?

Formula: Recurrence Relation for Arithmetic Sequence

Ouestion 8

Consider the following n^{th} term rule for the arithmetic sequence:

$$t_n = 10 - 3(n - 1)$$

 $t_n = t_{n-1} + d$ where $t_1 = a$

Find the recurrence relation which corresponds to it.

Sub-Section: Arithmetic Mean

What do we mean by the Arithmetic Mean?

Exploration: Finding arithmetic mean.

 \blacktriangleright Consider three terms of an arithmetic sequence with the common difference of d.

$$t_1 = a$$
, $t_2 = a + d$ and $t_3 = a + 2d$.

- \blacktriangleright Say that t_2 is an arithmetic mean (average) of t_1 and t_3 .
- Try finding the sum of t₁ and t₃.

$$t_1 + t_3 =$$

What should we do to $t_1 + t_3$ to find t_2 ?

$$t_2=\frac{t_1+t_3}{2}$$

The Arithmetic Mean

Definition:

Arithmetic Mean of
$$a$$
 and $b = \frac{a+b}{2}$

NOTE: Arithmetic mean is same as the so called "normal average".

Sub-Section: Arithmetic Series

<u>Discussion</u>: What would be the most efficient way of adding all the whole numbers 1 - 100?

 $1 + 2 + 3 + \cdots + 98 + 99 + 100$

Question 9

Find the sum of all the odd numbers from 1 to 99.

$$1+3+5+\cdots+95+97+99$$

Now let's generalise it for all arithmetic sequences!

Arithmetic Series (Form 1)

Use the following formula, if we know the first term, last term and number of terms.

$$S_n = \frac{n}{2}(a+l)$$

- Where n =number of terms, a = first term and l = last term.
- $\frac{n}{2}$ can be thought as the ______.
- a+l can be thought as the _____.

Question 10 Walkthrough.

Consider the arithmetic sequence with $t_1 = -5$ and $t_4 = 10$.

Find S_4 .

Question 11

Consider the arithmetic sequence with $t_1 = 3$ and $t_9 = 19$.

Find S_9 .

Now let's generalise it for all arithmetic sequences!

Exploration: Arithmetic series for when we don't know the last term (l).

Recall the series formula-

$$S_n = \frac{n}{2}(a+l)$$

- ➤ Which term would l be?
- \blacktriangleright How can we define t_n for an arithmetic sequence?
- On the space below, substitute l = a + d(n 1) to the series formula!

CONTOUREDUCATION

Arithmetic Series (Form 2)

Use the following formula, if we know the first term, common difference and number of terms.

$$S_n = \frac{n}{2}(2a + d(n-1))$$

• Where n = number of terms, a = first term and d = common difference.

Question 12 Walkthrough.

Consider the arithmetic sequence with $t_n = 2 + 3(n - 1)$.

Find S_{10} .

Question 13

Consider the arithmetic sequence with $t_n = -2 + \frac{1}{3}(n-1)$.

Find S_{13} .

Key Takeaways

- $\ensuremath{\checkmark}$ Arithmetic sequence has a common difference between the next term and the current one.
- Arr Arithmetic sequence is given by $t_n = a + (n-1)d$.
- \checkmark Arithmetic mean of a and b is $\frac{a+b}{2}$.
- Arithmetic sum is given by $\frac{n}{2}(a+l)$ or $\frac{n}{2}(2a+(n-1)d)$.

Section C: Geometric Sequence and Series

Sub-Section: Geometric Sequence

Now let's consider another type of sequence, "Geometric" sequences.

Arirthmetic Sequence

- Remember again
- He ate one chocolate bar on the first day.
- The next day, he ate two chocolate bars.
- \blacktriangleright Geometric sequence will suggest that Sam eats 4 chocolate bars on the 3^{rd} day!

Geometric Sequences

$$a$$
, ar , ar^2 , ar^3

- Definition:
 - A Geometric sequence is one where we keep multiplying or dividing by **the common ratio** to get the next term.

$$t_n = ar^{n-1}$$

• Where r is the common ratio, and a is the first term.

<u>Discussion:</u> Why do we have a power of n-1 instead of n? How many ratios do we multiply from t_1 to t_n ?

Question 14 Walkthrough.

Consider the geometric sequence defined by $t_n = 2 \cdot \left(\frac{1}{3}\right)^{n-1}$.

Identify the common ratio, first term and the 4th term.

NOTE: Geometric sequence is an exponential!

Question 15

Consider the geometric sequence defined by $t_n = 6 \cdot (2)^n$.

Identify the common ratio, first term and the 2nd term.

NOTE: Read the question carefully. Sometimes, they expand the n-1 power to confuse you!

Sub-Section: Geometric Recurrence Relation

What about recurrence relations for geometric sequence?

<u>Discussion:</u> What must be the relationship between the current term (t_n) and the previous term (t_{n-1}) for a geometric sequence?

Recurrence Relation for Geometric Sequence

$$t_n = t_{n-1} \times r$$
 where $t_1 = a$

Question 16

Consider the following n^{th} term rule for the geometric sequence

$$t_n=2\cdot 4^{n-1}$$

Find the recurrence relation which corresponds to it.

Sub-Section: Geometric Mean

How do we find a geometric term between two other geometric terms?

Exploration: Finding geometric mean.

 \blacktriangleright Consider three terms of a geometric sequence with the common ratio of r.

$$t_1 = a, t_2 = ar$$
 and $t_3 = ar^2$

➤ Geometric mean simply means a ______.

Here we can say, t_2 is a geometric mean (average) of _____.

 \blacktriangleright Find the product of t_1 and t_3 .

$$t_1 \cdot t_3 =$$

What should we do to $t_1 \cdot t_3 = a^2 r^2$ to find $t_2 = ar$?

$$t_2 =$$

The Geometric Mean

Definition: The **geometric mean** of two numbers a and b is the geometric term in between a and b.

 $a \sqrt{ab}$ b

Geometric Mean of a and $b = \sqrt{ab}$

TIP: Remember the similarity!

- Arithmetic Mean: We add the two and divide by 2.
- Geometric Mean: We multiply the two and square root.

Question 17

a. Find the geometric mean of 5 and 20.

b. Explain in words why 10 being a geometric mean makes sense.

Sub-Section: Geometric Series

Definition

Geometric Series

Definition: Sum of first n geometric terms is given by:

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

Where n = number of terms, a = first term and r = common ratio.

Question 18 Walkthrough.

Consider the geometric sequence $t_n = 2 \cdot (3)^{n-1}$.

Find S_4 .

Question	1	9

Consider the geometric sequence with $t_n = 4 \cdot \left(\frac{1}{2}\right)^{n-1}$.

Find S_5 .

Sub-Section: Infinite Geometric Series

What does infinite geometric series even mean?

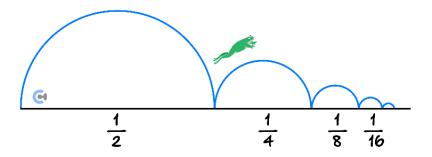
Context

Imagine a frog jumping from one end of the pond to the other.

Here's the catch!

The frog always jumps half of remaining distance.

The frog always jumps half of remaining distance.



Question 20

Construct a geometric sequence for which its terms represent the % of the distance between the two ends of the pond that the frog covers in his n^{th} jump.

CONTOUREDUCATION

NOTE: Notice how, even if the frog jumps infinitely, its distance covered is still a finite number.

- Even if we add infinitely many geometric terms, the series(sum) can still be finite.
- This is called "Zeno's Paradox".

NOTE: If the common ratio is higher than 1 like the above discussion, the infinite series will not be a finite number.

The Infinite Geometric Series

Definition: The sum of infinitely many geometric terms is given by

$$S_{\infty} = \frac{a}{1-r}$$

MPORTANT: Only works when -1 < r < 1.

Question 21 Walkthrough.

Identify the first term, common ratio and hence find the infinite series.

$$1 + \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots$$

Question 22

Identify the first term, common ratio and hence find the infinite series.

$$1 - \frac{2}{3} + \frac{4}{9} - \frac{8}{27} + \cdots$$

NOTE: The common ratio must be between -1 and 1 for an infinite series to be a finite number.

Key Takeaways

- ☑ Geometric sequence has a common ratio between the next term and the current one.
- ✓ Geometric sequence is given by $t_n = ar^{n-1}$.
- \checkmark Geometric mean of a and b is \sqrt{ab} .
- ✓ Geometric sum is given by $\frac{a(r^{n}-1)}{r-1}$.
- ✓ Infinite geometric sum is given by $\frac{a}{1-r}$, where -1 < r < 1.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

