

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Sequences & Series [1.3]

Homework Solutions

Homework Outline:

Compulsory Knowledge	Pg 2 — Pg 15
Extension Work	Pg 16 – Pg 25

Section A: Compulsory Questions

Sub-Section [1.3.1]: Finding Sequence from Recurrence Relations

Question 1

Construct the first five terms for the sequence given by, $t_n = 3 + t_{n-1}$, where $t_1 = 3$.

 $t_1=3, t_2=6, t_3=9, t_4=12, t_5=15.$

Question 2

Given that $t_n = 5 \cdot t_{n-1}$ and $t_1 = 2$, find the value of n for which t_n is equal to 250.

n=4

Ouestion	2
Question	

Given that $t_n = 4 \cdot t_n^2$ and $t_1 = 3$, find the value of t_3 .

 $t_3=5184$

Question 4 Tech-Active.

Given $t_{n+1}=t_n+\frac{1}{t_n}$ and $t_1=7$, find the value of n for which t_n is equal to $\frac{2549}{350}$.

n=3

Sub-Section [1.3.2]: Finding Arithmetic Sequence, Mean, and Series

Question 5

Consider the arithmetic sequence $t_n = 6n + 3$.

a. Find t_{10} .

$$t_{10}=63$$

b. Find the arithmetic mean of t_5 and t_{15} .

$$\frac{t_5+t_{15}}{2}=\frac{33+93}{2}=63$$

c. Evaluate S_5 .

$$S_5=rac{5}{2}(t_1+t_5)=105$$

Question 6

It is known that, $t_2 = 8$ and $t_4 = 18$.

 $\boldsymbol{a.} \ \ \,$ Find the first term and the common difference of the sequence.

$$d = \frac{t_4 - t_2}{4 - 2} = \frac{18 - 8}{2} = 5$$

$$a = t_1 = t_2 - d = 8 - 5 = 3$$

b. Find the general term t_n .

$$t_n = 3 + 5(n-1)$$
 (or anything equivalent)

c. Evaluate S_4 .

Method 1: $S_4 = rac{n}{2}(2a + d(n-1)) = rac{4}{2}(2 \cdot 3 + 5 \cdot (4-1)) = 42$

Method 2: $S_4 = \frac{4}{2}(t_1 + t_4) = \frac{4}{2}(3 + 18) = 42$

Question 7

Find the sum of all the multiples of 4 between 0 and 100.

$$4 + 8 + ... + 96 + 100$$

$$4 + 8 + \ldots + 100 = \frac{25}{2}(4 + 100) = 1300$$

NOTE: How do we know there are 25 terms? Because $t_n = 4 + 4(n-1)$ so you can solve for $t_n = 100$ for n.

Question 8 Tech-Active.

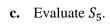
Given that $S_4 = 64$ and $S_{10} = 280$, find the values of a (the first term) and d (the common difference) and hence, write down the general term t_n of the sequence.

$$a=10,\; d=4$$

Sub-Section [1.3.3]: Finding Geometric Sequence, Mean, and Series

Question 9

Given $t_n = 7\left(\frac{1}{2}\right)^n$.


a. Find t_6 .

 $t_6=\frac{7}{64}$

b. Find the geometric mean of t_5 and t_7 .

 $\sqrt{t_5\cdot t_7}=rac{7}{64}$

$$S_5 = rac{rac{7}{2} \left(\left(rac{1}{2}
ight)^5 - 1
ight)}{rac{1}{2} - 1} = rac{217}{32}$$

Question 10

It is known that, $t_2 = \frac{8}{9}$ and $t_4 = \frac{8}{81}$.

a. Find the common ratio (given that it is positive) and first term.

$$a=\frac{8}{3},\ r=\frac{1}{3}$$

CHONTOUREDUCATION

b. Find the general term t_n .

$$t_n = \frac{8}{3} \left(\frac{1}{3}\right)^{n-1}$$

c. Evaluate S_4 .

$$S_4 = rac{rac{8}{3} \left(\left(rac{1}{3}
ight)^4 - 1
ight)}{rac{1}{3} - 1} = rac{320}{81}$$

Question 11

Consider $t_n = \frac{1}{2} \cdot t_{n-1}$. Find t_1 if, $S_{10} = \frac{3069}{256}$.

 $t_1=6$

Question 12 Tech-Active.

Given that $S_5 = 155$ and $S_8 = 1275$, find the values of a (the first term) and d (the common difference) and hence, write down the general term t_n of the sequence.

 $a=5,\ r=2,\ t_n=5\cdot 2^{n-1}$

Sub-Section [1.3.4]: Infinite Geometric Series

Question 13

Identity first term, common ratio and hence, find the value of series.

$$\frac{9}{5} + \frac{9}{25} + \frac{9}{125} + \frac{9}{625} + \dots$$

$$S_{\infty}=rac{9}{4}$$

Question 14

Identity first term, common ratio and hence, find the value of series.

$$2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27} + \cdots$$

$$S_{\infty}=rac{3}{2}$$

Question 15

Find the value of r, given that:

$$3 + 3r + 3r^2 + 3r^3 + \dots = 9$$

$$r=rac{2}{3}$$

Question 16 Tech-Active.

Find the value of a, given that:

$$a - \frac{a}{2} + \frac{a}{4} - \frac{a}{8} + \frac{a}{16} + \dots = 18$$

a = 36

Sub-Section: The 'Final Boss'

Question 17

Consider a geometric sequence, $t_n = 6 \cdot r^{n-1}$ where, -1 < r < 1. Suppose that, $S_2 = \frac{48}{7}$.

a. Show that, $r = \frac{1}{7}$.

$$6+6r+6r^2=rac{342}{49} \implies r=rac{1}{7} ext{ or } r=-rac{8}{7} ext{ (reject because } r<-1)$$

b. Write the rule for S_n .

$$S_n = rac{6\left(\left(rac{1}{7}
ight)^n - 1
ight)}{rac{1}{7} - 1} = 7\left(1 - \left(rac{1}{7}
ight)^n
ight)$$

c. Find the value of S_{∞} .

$$ext{Method 1:} \quad S_n = rac{6\left(\left(rac{1}{7}
ight)^n - 1
ight)}{rac{1}{7} - 1} = 7\left(1 - \left(rac{1}{7}
ight)^n
ight)
ightarrow 7 ext{ as } n
ightarrow \infty.$$

Method 2:

$$S_{\infty}=rac{6}{1-rac{1}{7}}=7$$

d. Hypothetically, you would need to add an infinite number of terms to obtain S_{∞} . What is the least number of terms you need to add so that, the sum S_n is "sufficiently close" to S_{∞} ? For the purpose of this question, this means to find the smallest value of n so that, $S_n > 0.99S_{\infty}$.

The answer is n=3. Note that $0.99\cdot S_{\infty}=6.93.$

Method 1 (Brute force):

$$S_1 = 6, S_2 pprox 6.857, S_3 pprox 6.980$$

Method 2 (Logarithms!): $S_n = 7\left(1 - \frac{1}{7^n}\right) = 6.93 \implies n = 2.37$ Round up to get n = 3

Section B: Supplementary Questions

Sub-Section [1.3.1]: Finding Sequence from Recurrence Relations

Question 18

Given $t_n = 6 + 4 \cdot t_{n-1}$ and $t_1 = 3$, find the value of t_3 . Is the sequence an arithmetic sequence, geometric sequence, or neither?

$$t_{3} = 78$$

Question 19

Given $t_n = t_{n-1}^{t_{n-1}}$ and $t_1 = 2$, find the value of n so that, $t_n = 256$.

$$n = 3$$

Question	20

Given $t_n = t_{n-1}^2$ and $t_1 = 3$, find the smallest n so that, $t_n > 100$.

n=4

Question 21

Given $t_n = -t_{n-1}$ and $t_1 = 2$. Write down the first few terms in the sequence and hence, write down a formula for the general term t_n .

 $t_n = 2(-1)^{n-1}$

Sub-Section[1.3.2]: Finding Arithmetic Sequence, Mean, and Series

Question 22

Consider the arithmetic sequence, $t_n = t_{n-1} + 5$ and $t_1 = 2$.

a. Find t_{10} .

$$t_n = 2 + 5(n-1) \implies t_{10} = 47$$

b. Find the arithmetic mean of t_3 and t_{10} .

$$\frac{t_3 + t_{10}}{2} = \frac{59}{2}$$

c. Evaluate S_4 .

 $S_4=38$

Question 23

Find the value of x so that, the arithmetic mean of 8 and 2x + 6 is 17.

x = 10

04	2
Onestion	24

Let $t_n = 5 + dn$. Find the value of d if, $S_4 = 50$.

$$d=3$$

Question 25

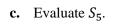
Given that $t_4 = 16$ and $S_8 = 136$, find the values of a (the first term) and d (the common difference) and hence, write down the general term t_n of the sequence.

$$a=10,\; d=2,\; t_n=10+2(n-1)$$

Sub-Section [1.3.3]: Finding Geometric Sequence, Mean, and Series

Question 26

Given $t_n = 4t_{n-1}$ and $t_1 = 3$.


a. Find t_3 .

$$t_3=48$$

b. Find the geometric mean of t_2 and t_5 .

$$\sqrt{t_2 \cdot t_5} = 96$$

$$S_5 = \frac{3 \cdot (4^5 - 1)}{4 - 1} = 1023$$

Question 27

Suppose that t_n is a geometric series such that, $t_5 = 40.5$ and $t_9 = 3280.5$. Find the common ratio of the geometric series.

$$r = 3$$

a	•
Question	28

Let $t_n = 4 \cdot r^n$. Find the value(s) of r given that, the geometric mean between t_4 and t_8 is 256.

 $r=\pm\overline{2}^{-}$

Question 29

Given $t_n = 6 \cdot t_{n-1}$ and $t_1 = 7$. Find the smallest value of n so that, S_n first exceeds 1000.

n=4

Sub-Section [1.3.4]: Infinite Geometric Series

Question 30

Find the value of the infinite series:

$$\frac{7}{2} - \frac{7}{4} + \frac{7}{8} - \frac{7}{16} + \cdots$$

$$S_{\infty}=rac{7}{3}$$

Question 31

Find the value of the infinite series:

$$2 + \frac{2}{7} + \frac{2}{49} + \frac{2}{343} + \cdots$$

$$S_{\infty}=rac{7}{3}\ (ext{again!})$$

Question 32

Find the value of r, given that:

$$5 + 5r + 5r^2 + 5r^3 + \dots = \frac{45}{8}$$

 $r=rac{1}{9}$

Question 33

Find the value of *a*, given that:

$$a - \frac{a}{6} + \frac{a}{36} - \frac{a}{216} + \dots = \frac{54}{5}$$

a = 9

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- **What To Do?** Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

