

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Sequences & Series [1.3]

Homework

Homework Outline:

Compulsory Knowledge	Pg 2 – Pg 15
Extension Work	Pg 16 – Pg 25

Section A: Compulsory Questions

Sub-Section [1.3.1]: Finding Sequence from Recurrence Relations

Question 1	
Construct the first five terms for the sequence given by, $t_n = 3 + t_{n-1}$, where $t_1 = 3$.	
Question 2	
Given that $t_n = 5 \cdot t_{n-1}$ and $t_1 = 2$, find the value of n for which t_n is equal to 250.	
Space for Personal Notes	

أرارار

Given $t_{n+1} = t_n + \frac{1}{t_n}$ and $t_1 = 7$, find the value of n for which t_n is equal to $\frac{2549}{350}$.

Sub-Section [1.3.2]: Finding Arithmetic Sequence, Mean, and Series

<u>u</u>	estion 5
OI	nsider the arithmetic sequence $t_n = 6n + 3$.
	Find t_{10} .
	Find the arithmetic mean of t_5 and t_{15} .

c.	Evaluate S_5 .

Question 6

It is known that, $t_2 = 8$ and $t_4 = 18$.

a.	Find the first term and the common difference of the sequence.		

b. Find the general term t_n .

c.	Evaluate S_4 .

Question 7

Find the sum of all the multiples of 4 between 0 and 100.

$$4 + 8 + ... + 96 + 100$$

Question 8 Tech-Active.
Given that $S_4 = 64$ and $S_{10} = 280$, find the values of a (the first term) and d (the common difference) and hence, write down the general term t_n of the sequence.

Space for Personal Notes

Sub-Section [1.3.3]: Finding Geometric Sequence, Mean, and Series

Question 9	
Given $t_n =$	$=7\left(\frac{1}{2}\right)^n$.

a. Find t_6 .

b. Find the geometric mean of t_5 and t_7 .

c. Evaluate S_5 .

Question 10

It is known that, $t_2 = \frac{8}{9}$ and $t_4 = \frac{8}{81}$.

a. Find the common ratio (given that it is positive) and first term.

b.	Find the general term t_n .
	··
c.	Evaluate S_4 .
Sp	ace for Personal Notes

Question 11	الألا
Consider $t_n = \frac{1}{2} \cdot t_{n-1}$. Find t_1 if, $S_{10} = \frac{3069}{256}$.	
Question 12 Tech-Active.	
Given that $S_5 = 155$ and $S_8 = 1275$, find the values of α (the first term) and d (the commhence, write down the general term t_n of the sequence.	on difference) and

Sub-Section [1.3.4]: Infinite Geometric Series

Question	13
Question	1.

ſ

Identity first term, common ratio and hence, find the value of series.

$$\frac{9}{5} + \frac{9}{25} + \frac{9}{125} + \frac{9}{625} + \dots$$

Question 14

Identity first term, common ratio and hence, find the value of series.

$$2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27} + \cdots$$

Question	15
Question	10

Find the value of r, given that:

$$3 + 3r + 3r^2 + 3r^3 + \dots = 9$$

Question 16 Tech-Active.

Find the value of a, given that:

$$a - \frac{a}{2} + \frac{a}{4} - \frac{a}{8} + \frac{a}{16} + \dots = 18$$

Sub-Section: The 'Final Boss'

Question 17

Consider a geometric sequence, $t_n = 6 \cdot r^{n-1}$ where, -1 < r < 1. Suppose that, $S_2 = \frac{48}{7}$.

a. Show that, $r = \frac{1}{7}$.

c.	Find the value of S_{∞} .
d.	Hypothetically, you would need to add an infinite number of terms to obtain S_{∞} . What is the least number of terms you need to add so that, the sum S_n is "sufficiently close" to S_{∞} ? For the purpose of this question, this means to find the smallest value of n so that, $S_n > 0.99S_{\infty}$.
Sp	ace for Personal Notes

Section B: Supplementary Questions

Sub-Section [1.3.1]: Finding Sequence from Recurrence Relations

Question 18		
Given $t_n = 6 + 4$.	t_{n-1} and $t_1 = 3$, find the value of t_3 . Is the sequence an arithmetic sequence, geometric	
equence, or neither		
		_
Question 19		
~		
Given $t_n = t_{n-1}^{n-1}$ and	and $t_1 = 2$, find the value of n so that, $t_n = 256$.	

Question 20	
Given $t_n = t_{n-1}^2$ and $t_1 = 3$, find the smallest n so that, $t_n > 100$.	
Question 21	4666
Given $t_n = -t_{n-1}$ and $t_1 = 2$. Write down the first few terms in the sequence and hence, write down a for the general term t_n .	formula
Space for Personal Notes	

Sub-Section[1.3.2]: Finding Arithmetic Sequence, Mean, and Series

Que	estion 22
Con	sider the arithmetic sequence, $t_n = t_{n-1} + 5$ and $t_1 = 2$.
a.	Find t_{10} .
b.	Find the arithmetic mean of t_3 and t_{10} .

c.	Evaluate S_4 .	:
-		
-		
	,	
Que	estion 23	
Find	I the value of x so that, the arithmetic mean of 8 and $2x + 6$ is 17.	
		:
		:
-		
Spa	ce for Personal Notes	

Question 24			עעע
Let $t_n = 5 + dn$. Find	the value of d if, $S_4 = 50$.		
Question 25			ارزرز
11 ven mai $t_4 - 10$ and	$S_8 = 136$, find the values of a (the	mst term) and a (the com	mon difference) and hence,
rite down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
write down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
write down the general	erm t_n of the sequence.		
vrite down the general	erm t_n of the sequence.		
	erm t_n of the sequence.		
	erm t_n of the sequence.		
Space for Personal N	erm t_n of the sequence.		
	erm t_n of the sequence.		
	erm t_n of the sequence.		

Sub-Section [1.3.3]: Finding Geometric Sequence, Mean, and Series

Qu	estion 26	
Giv	$t_n = 4t_{n-1} \text{ and } t_1 = 3.$	
a.	Find t_3 .	
b.	Find the geometric mean of t_2 and t_5 .	

c.	Evaluate S_5 .	
		-
		-
		-
		-
		-
Qu	estion 27	
Sup	expose that t_n is a geometric series such that, $t_5 = 40.5$ and $t_9 = 3280.5$. Find the common ratio of the sometric series.	
500		-
		-
		_
		-
		-
Spa	ace for Personal Notes	

					עעע
Let $t_n = 4 \cdot r^n$. Find	the value(s) of r giv	en that, the geor	metric mean bety	ween t_4 and t_8 is 25	66.
Question 29					
·	14 7 E. 14b	11	6	1- 1000	
Given $t_n = 6 \cdot t_{n-1}$ a	$nd t_1 = 7. Find the s$	smallest value o	I n so that, S_n II	rst exceeds 1000.	
Space for Personal	Votes				
Space for Personal	Notes				
Space for Personal	Notes				
Space for Personal	Notes				
Space for Personal	Notes				

Sub-Section [1.3.4]: Infinite Geometric Series

Question	30
V CLUSTOIL	_

Find the value of the infinite series:

$$\frac{7}{2} - \frac{7}{4} + \frac{7}{8} - \frac{7}{16} + \cdots$$

Question 31

Find the value of the infinite series:

$$2 + \frac{2}{7} + \frac{2}{49} + \frac{2}{343} + \cdots$$

·		

Question	32
Question	JA

Find the value of r, given that:

$$5 + 5r + 5r^2 + 5r^3 + \dots = \frac{45}{8}$$

Question 33

Find the value of *a*, given that:

$$a - \frac{a}{6} + \frac{a}{36} - \frac{a}{216} + \dots = \frac{54}{5}$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

