

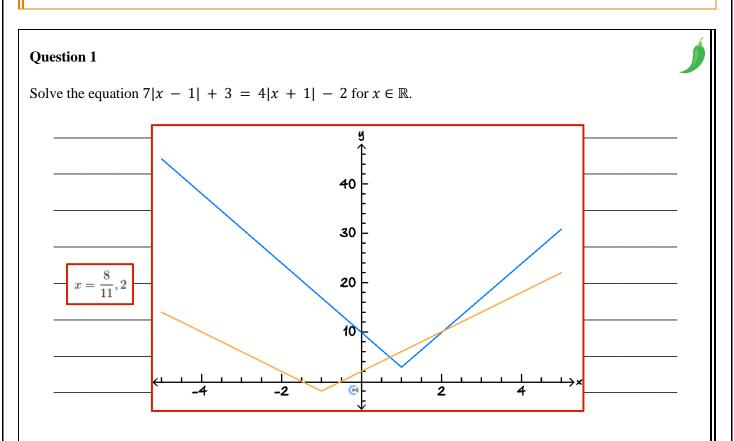
Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Modulus & Partial Fractions Exam Skills [1.2]

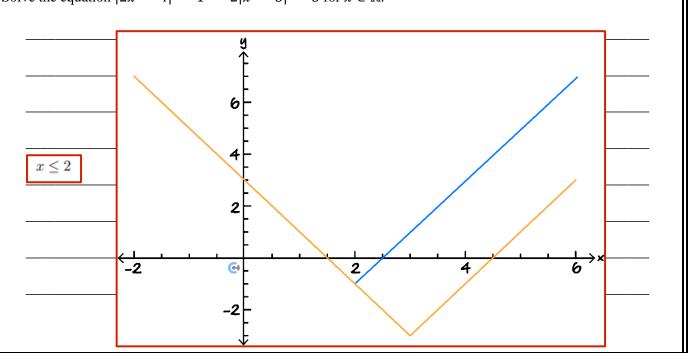
Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 - Pg 15
Supplementary Questions	Pg 16 - Pg 29

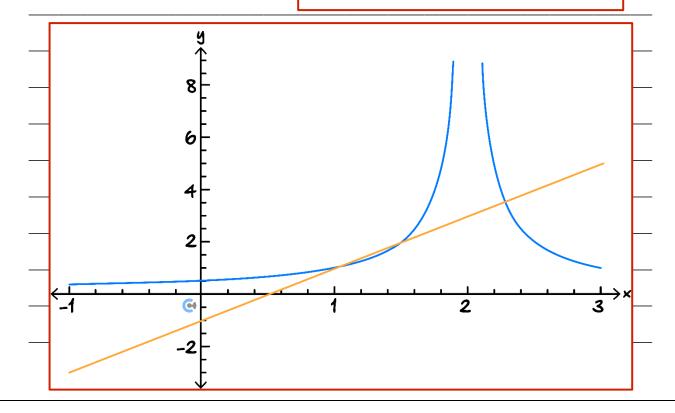


Section A: Compulsory Questions



Sub-Section [1.2.1]: Solving Advanced Algebra and Inequalities

Solve the equation |2x - 4| - 1 = 2|x - 3| - 3 for $x \in \mathbb{R}$.



Solve the inequality $\frac{1}{|x-2|} > 2x - 1$ for $x \in \mathbb{R}$.

$$x < 1 \text{ or } \frac{3}{2} < x < 2 \text{ or } 2 < x < \frac{1}{4}(5 + \sqrt{17})$$

Question 4 Tech-Active.

Solve the inequality $|x^2 - 4x + 5| > x$.

$$x < \frac{1}{2}(5 - \sqrt{5}) \text{ or } x > \frac{1}{2}(5 + \sqrt{5})$$

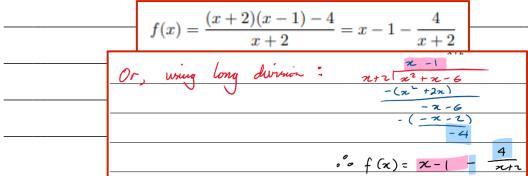
<u>II:</u>	Mathematica:	Casio:
solve $(x^2-4\cdot x+5 < x, x)$ $\frac{-(\sqrt{5}-5)}{2} < x < \frac{\sqrt{5}+5}{2}$	In[122]:= Reduce [Abs [$x^2 - 4x + 5$] < x , x] Out[122]:= $\frac{1}{2} (5 - \sqrt{5}) < x < \frac{1}{2} (5 + \sqrt{5})$	solve(x^2-4x+5 >x,x) $\left\{x < \frac{-\sqrt{5}}{2} + \frac{5}{2}, \frac{\sqrt{5}}{2} + \frac{5}{2} < x\right\}$

Sub-Section: Exam 1 Questions

Question 5

Solve the equation $|x - 4| = \frac{x}{2} + 5$.

 $x = -\frac{2}{3}, 18$



Question 6
Solve the inequality $4 - x > \frac{1}{ x-2 }$ for $x \in \mathbb{R}$.
$x < 3 - \sqrt{2}$

Question 7

Consider the function f with rule $f(x) = \frac{x^2 + x - 6}{x + 2}$.

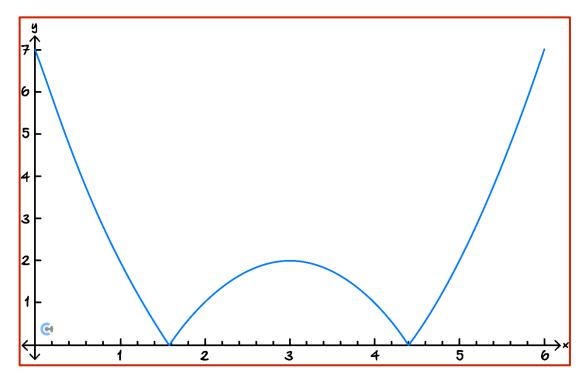
a. Show that the rule for the function f can be written as $f(x) = x - 1 - \frac{4}{x+2}$

b. Solve the inequality f(x) > x + 3 for $x \in \mathbb{R}$.

$$-3 < x < -2$$

a. Perform partial fraction decomposition for $f(x) = \frac{3x^2}{(x-1)^2(x+2)}$.

 $\frac{1}{(x-1)^2} + \frac{4}{3(x+2)} + \frac{5}{3(x-1)}$


b. Express $g(x) = \frac{x^3 - 27}{(x - 3)(x^2 + 2x + 1)}$ in the form $\frac{A}{(x + 1)^2} + \frac{B}{x + 1} + C$ for real numbers A, B and C.

 $\frac{7}{(x+1)^2} + \frac{1}{x+1} + 1$

Let
$$f(x) = (x - 3)^2 - 2$$
.

Sketch the graph of y = |f(x)| on the axis below. Label all axes intercepts and turning points.

$$x-$$
 intercepts : $(3-\sqrt{2},0), (3+\sqrt{2},0)$ and $y-$ intercept $(0,7)$ and TP $(3,2)$

Sub-Section: Exam 2 Questions

Question 10

Which one of the following, where A, B, C, D and E are non-zero real numbers, is a partial fraction form for the expression?

$$\frac{2}{(x^2-4)(x-2)^3}$$

A.
$$\frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{(x-2)^3} + \frac{D}{x+2}$$

B.
$$\frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{(x-2)^3} + \frac{D}{(x-2)^4} + \frac{E}{x+2}$$

C.
$$\frac{Ax+B}{x^2-4} + \frac{C}{x+2} + D$$

D.
$$\frac{Ax}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{(x-2)^3} + \frac{D}{(x-2)^4} + \frac{E}{x+2}$$

Question 11

The equation x + 3 = |x - 4| + 2, where $x \in \mathbb{R}$, has solution(s):

A.
$$x = 1, -\frac{3}{2}$$

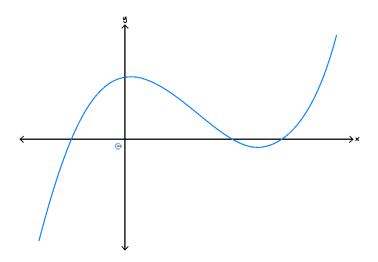
B.
$$x = \frac{3}{2}$$

C.
$$x = -1$$

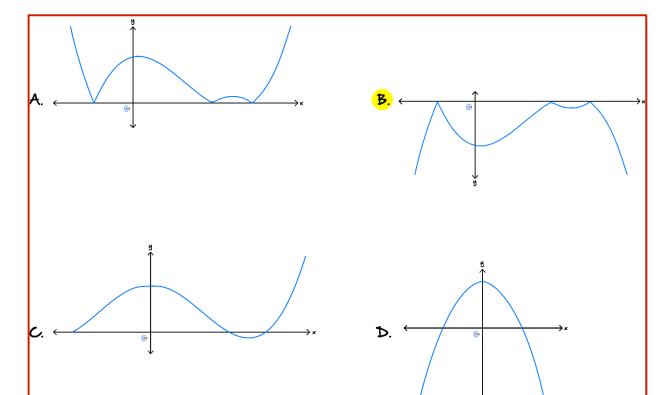
D.
$$x = -1, \frac{3}{2}$$

The graph of y = |2x - 1| - |x - 3| is the same as the graph of y = 3x - 4 for which of the following ranges of x-values:

- **A.** $x > \frac{1}{2}$
- **B.** $x \le \frac{1}{2}$
- C. $\frac{1}{2} \le x \le 3$
- **D.** $x \ge 3$


Question 13

The equation $|x^2 + 4x - 6| = k$, where k is a real number has exactly three solutions for:


- **A.** k = 10
- **B.** 0 < k < 10
- C. k > 10
- **D.** k > 0

Part of the graph of y = f(x) is shown below.

The function -|f(x)| is best represented by:

Consider the function $f(x) = |x - 1| + \left| \frac{x}{2} - 2 \right|$

a. Explain why the graph of y = f(x) has no x-intercepts.

Both |x-1| and $\left|\frac{x}{2}-2\right|$ are always ≥ 0 , so f(x) can never equal zero because it is the sum of two quantities that are ≥ 0 and are both never zero at the same time.

b. State the minimum value of f(x) and the x-value where this occurs.

Minimum of $\frac{3}{2}$ when x = 1.

c.

i. Find the range of x-values for which $f(x) = \frac{1}{2}x + 1$.

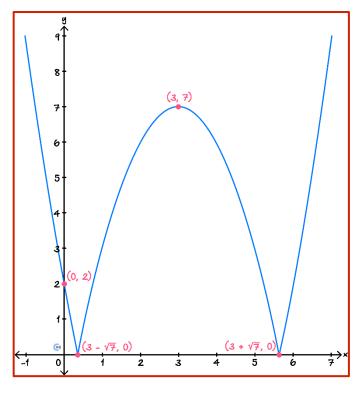
 $1 \leq x \leq 4$

ii. When x < -6, f(x) may be written as f(x) = mx + c. Find the values of m and c.

 $f(x) = -\frac{3}{2}x + 3 \implies m = -\frac{3}{2} \text{ and } c = 3$

iii. When x > 6, f(x) may be written as f(x) = nx + d. Find the values of n and d.

$$f(x) = \frac{3}{2}x - 3 \implies n = \frac{3}{2} \text{ and } d = -3$$


d. Solve the inequality f(x) < x + 3.

$$0 < x < 12$$

Question 16

Consider the function $h(x) = |x^2 - 6x + 2|$.

a. Sketch the graph of y = h(x) on the axis below. Label all axes intercepts and turning points.

b. Solve the inequality x + 2 > h(x) for $x \in \mathbb{R}$.

0 < x < 1 or 4 < x < 7

c. The equation h(x) = k, where k is a real number, has 4 real solutions. Find the possible value(s) of k.

0 < k < 7.

Section B: Supplementary Questions

Question	17
Oucsuon	1/

Solve the equation |x - 1| + 3 = |3x + 1| - 2 for $x \in \mathbb{R}$.

 $x = -\frac{7}{2}, \frac{3}{2}$

Question 18

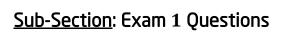
Solve the equation |2x - 3| = -2|x + 1| + 5 for $x \in \mathbb{R}$.

 $-1 \le x \le \frac{3}{2}$

	_	
Onestion	1	Ļ

Solve the inequality $\frac{1}{|x-4|} + 2 < x + 6$ for $x \in \mathbb{R}$.

 $-\sqrt{15} < x < \sqrt{15} \text{ or } x > \sqrt{17}$


Questi	ion	20
Outsu	IUII	∠ ∪

Solve the inequality $\left| \frac{x-4}{x+1} \right| - 3 > |x+2|$ for $x \in \mathbb{R}$.

 $x \in \left(\frac{1}{2}(-1-\sqrt{21}), \frac{1}{2}(3\sqrt{5}-7)\right) \setminus \{-1\}$

Ouestion	21
Question	41

Solve the equation |x - 4| = 2|x + 8|.

x = -20, -4

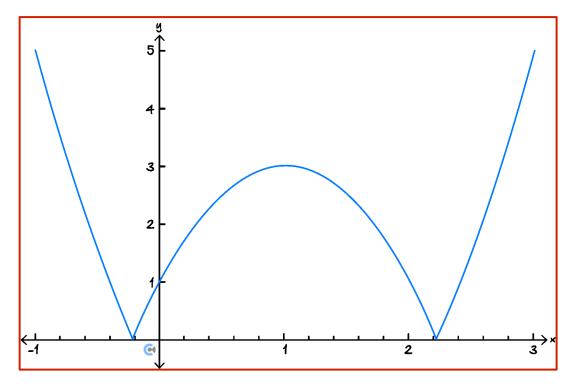
Question	22

Solve the inequality $x + 2 > \frac{1}{\sqrt{x^2 - 4x + 4}}$ for $x \in \mathbb{R}$.

Equivalent to $x + 2 > \frac{1}{|x - 2|}$ $-\sqrt{3} < x < \sqrt{3} \text{ or } x > \sqrt{5}$

a. Perform partial fraction decomposition for $f(x) = \frac{6x}{(x-1)(x+2)}$.

 $\frac{2}{x-1} + \frac{4}{x+2}$


b. Express $g(x) = \frac{x^3 + 8}{(x+2)(x^2 + 4x + 4)}$ in the form $\frac{A}{(x+2)^2} + \frac{B}{x+2} + C$ for real numbers A, B and C.

 $\frac{12}{(x+2)^2} - \frac{6}{x+2} + 1$

Let
$$f(x) = 2x^2 - 4x - 1$$
.

Sketch the graph of y = |f(x)| on the axis below. Label all axes intercepts and turning points.

$$x - \text{intercepts} : (1 - \frac{\sqrt{6}}{2}, 0), (1 + \frac{\sqrt{6}}{2}, 0) \text{ and } y - \text{intercept} (0, 1) \text{ and TP } (1, 3)$$

Question 25

Consider the function f with rule $f(x) = \frac{x^2 + x + 4}{x + 1}$.

a. Show that the rule for the function f can be written as $f(x) = x + \frac{4}{x+1}$.

 $f(x) = \frac{x(x+1)+4}{x+1} = x + \frac{4}{x+1}$

Long division is n+1 $\left(\frac{\pi}{x^2+\pi+4}\right)$ $-\left(\frac{\pi^2+\pi}{x^2+\pi}\right)$

 $f(x) = x + \frac{4}{x+1}$

b. Solve the inequality f(x) > x + 5 for $x \in \mathbb{R}$.

 $-1 < x < -\frac{1}{5}$

Sub-Section: Exam 2 Questions

Question 26

The equation |2x - 3| = -|x + 2| + 6, where $x \in \mathbb{R}$, has solution(s):

A.
$$x = -1, \frac{7}{3}$$

B.
$$x = \frac{5}{3}$$

C.
$$x = -1$$

D.
$$x = 7, \frac{5}{3}$$

Question 27

The graph of y = |2x - 1| - |x - 3| is the same as the graph of y = -2 - x for which of the following ranges of x values:

A.
$$x > \frac{1}{2}$$

$$\mathbf{B.} \quad x \leq \frac{1}{2}$$

C.
$$\frac{1}{2} \le x \le 3$$

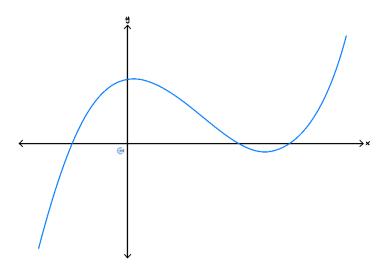
D.
$$x \ge 3$$

Question 28 (1 mark)

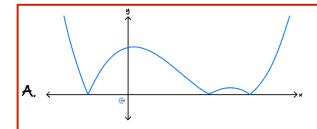
Which one of the following, where A, B, C, and D are non-zero real numbers, is a partial fraction form for the expression?

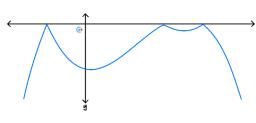
$$\frac{x-3}{(x^2-1)(x-2)}$$

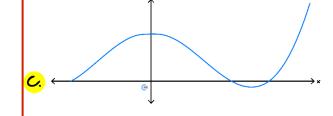
- **A.** $\frac{A}{x^2-1} \frac{B}{(x-2)^2}$
- **B.** $\frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x-2}$
- C. $\frac{Ax+B}{x^2-1} + \frac{C}{x-2} + \frac{Dx}{x-2}$
- **D.** $\frac{A}{x^2-1} + \frac{C}{x-2} + \frac{D}{x-4}$


Question 29

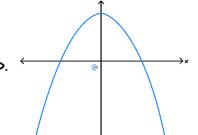
The equation $|x^2 + 2x - 8| = k$, where k is a real number has exactly four solutions for:


- **A.** k = 9
- **B.** 0 < k < 9
- **C.** k > 9
- **D.** k > 0

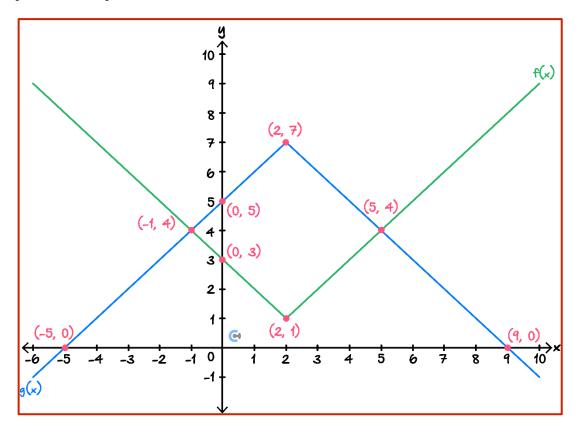

Part of the graph of y = f(x) is shown below.



The function f(|x|) is best represented by



В.


⊅.

Consider the functions f(x) = |x - 2| + 1 and g(x) = -|x - 2| + 7

a. Sketch the graphs of y = f(x) and y = g(x) on the axes below. Label all points of intersection, axes intercepts, and vertex points with coordinates.

b. Solve the inequality f(x) < g(x).

-1 < x < 5

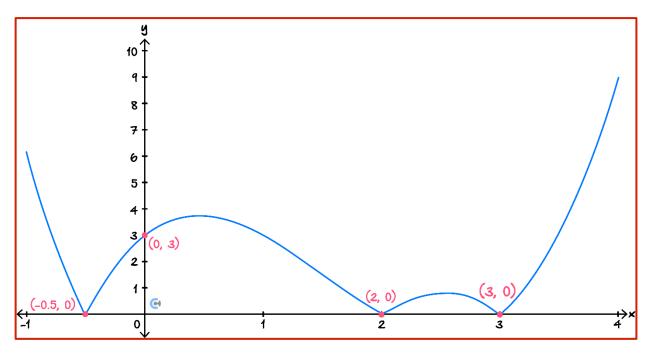
c.

i. Find the value(s) of k for which the line y = k - x never intersects the graph of y = g(x).

k > 9

ii. Find the value(s) of k for which k - x = g(x) has infinitely many solutions.

k = 9


d. Find the area of the region bounded between the graphs of y = f(x) and y = g(x)

 ${\rm Area} = 2 \times \frac{1}{2} \times 6 \times 3 = 18$

Question 32

Consider the function $h(x) = \left| x^3 - \frac{9x^2}{2} + \frac{7x}{2} + 3 \right|$.

a. Sketch the graph of y = h(x) on the axis below. Label all axes intercepts.

b. Solve the inequality x + 5 > h(x) for $x \in \mathbb{R}$. Give your answer correct to two decimal places.

-0.87 < x < 4

c. The equation h(x) = k, where k is a real number, has 6 real solutions. Find the possible value(s) of k. Give your answer correct to three decimal places.

The maximum value of h(x) for 2 < x < 3 is ≈ 0.755 Therefore, 0 < k < 0.755.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

