

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Modulus & Partial Fractions [1.1]

Workbook

Outline:

Modulus Functions

Pg 2-8

Pg 9-18

- Solving Modulus Equations
- Solving Modulus Inequalities

Graphing Modulus Functions

- Solving Modulus Functions
- Graphing Composite of Modulus Functions

Partial Fractions

Introduction to Partial Fractions

- Case 1
- Case 2
- Case 3

Pg 19-25

Section A: Modulus Functions

What is a Modulus Function?

Modulus functions

Definition:

$$f(x) = |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

- Is a hybrid function.
- Purpose: Always return a non-negative number.
- **>** Range: [0, ∞).

Question 1

Evaluate the following:

a. |-7|

b.
$$|3^2 - 2(3) - 2|$$

Discussion: What's the point of modulus?

Exploration: Alternative definition of modulus functions

What happens when you square -2 and square root it?

$$-2
ightarrow$$

So, what is squaring a number and then square rooting it the same as?

$$\sqrt{x^2} =$$

Definition

Alternative definition of Modulus Functions

$$\sqrt{x^2} = |x|$$

NOTE: Important not to forget the modulus in the exams!

Space for Personal Notes

Sub-Section: Solving Modulus Equations

<u>Discussion:</u> How do we solve for modulus equations like |f(x)| = 2?

Solving equations involving modulus functions

$$|f(x)| = b$$

$$f(x) = \pm b$$

- > Interpretation:
 - $\bullet \quad \text{The} \underline{\qquad} f(x) \text{ equals to } b.$
 - f(x) can be either _____.

Question 2 Walkthrough.

Solve the following equation below.

$$|x - 3| = 2$$

Your turn!

Question 3

Solve the following equations for x:

a.
$$|x + 2| = 5$$

b.
$$|3 - \sqrt{x}| = 1$$

TIP: Check your solutions by substituting it back into the equation!

Sub-Section: Solving Modulus Inequalities

How far is the number 5 from 2?

<u>Discussion:</u> What does |5-2| equal to? What does this mean?

Exploration: Solving modulus inequalities

Understanding:

$$|x-2| =$$
distance between x and 2

Interpretation:

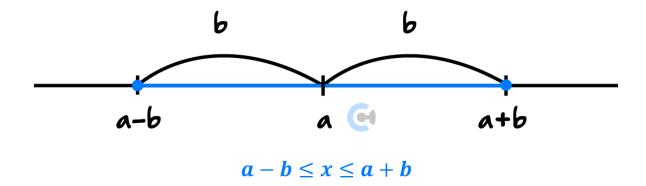
$|x-2| \le 1 \rightarrow \text{distance between } x \text{ and 2 is [less] / [greater] than or equal to 1}$

Solving: Use the number line below to solve $|x - 2| \le 1$.

Space for Personal Notes

CONTOUREDUCATION

Solving modulus inequalities



$$|x-a| \leq b$$

Interpretation:

x has a distance from 'a' that is less than or equal to 'b'

Visualise:

TIP: Always sketch a number line!

Question 4 Walkthrough.

Solve the following inequality.

$$|x + 3| < 3$$

Solve each of the following inequalities for x:

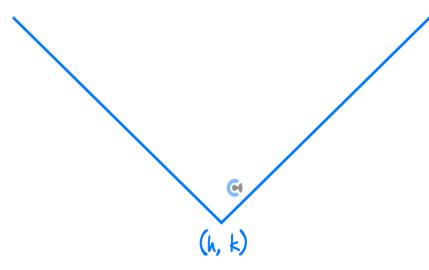
a. $|x| \ge 3$

b. $|2x-4|-3 \ge 5$

Key Takeaways

- ✓ Modulus finds a size of things.
- |a-b| is a distance between a and b.
- $\sqrt{x^2} = |x|$
- $\ensuremath{ \ensuremath{ \begin{tabular} \$

Section B: Graphing Modulus Functions


Sub-Section: Sketching Modulus Functions

7

Let's now consider the graph of Modulus Functions!

Graph of the modulus function

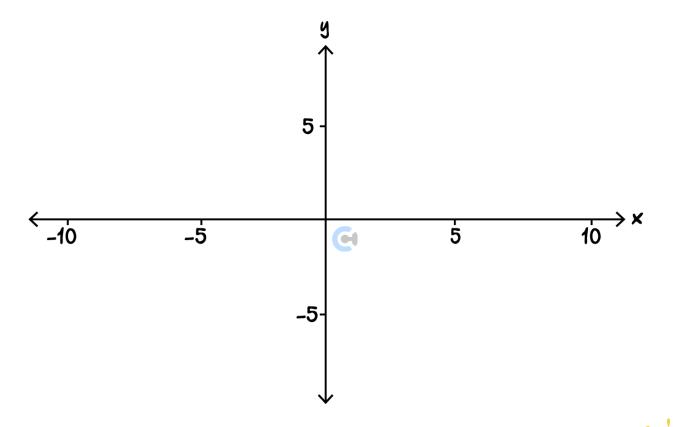
General form:

$$y = a|x - h| + k$$

- \bigcirc Vertex is at (h, k).
- Hybrid form:

$$y = \begin{cases} a(x-h) + k, & x \ge h \\ -a(x-h) + k, & x < h \end{cases}$$

Space for Personal Notes


Question 6 Walkthrough.

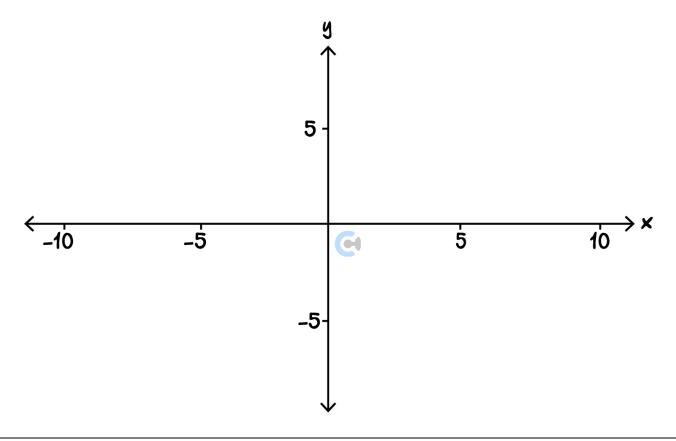
Consider the function $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2|x-1| - 2.

a. Find the vertex.

b. Find the axes intercepts.

c. Sketch the graph of y = f(x). Label all axes intercepts and the vertex.

TIP: Think of modulus functions as a "Straightened quadratic".



Consider the function $g: \mathbb{R} \to \mathbb{R}$, g(x) = -3|x+2| + 6.

a. Find the vertex.

b. Find the axes intercept(s).

c. Sketch the graph of y = g(x). Label all axes intercepts and the vertex.

Sub-Section: Graphing Composite of Modulus Functions

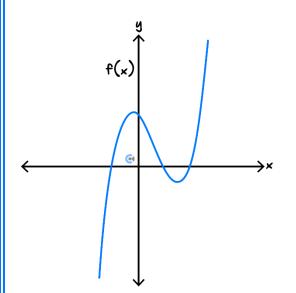
REMINDER: Don't forget!

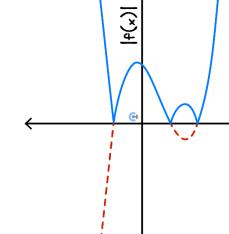
0

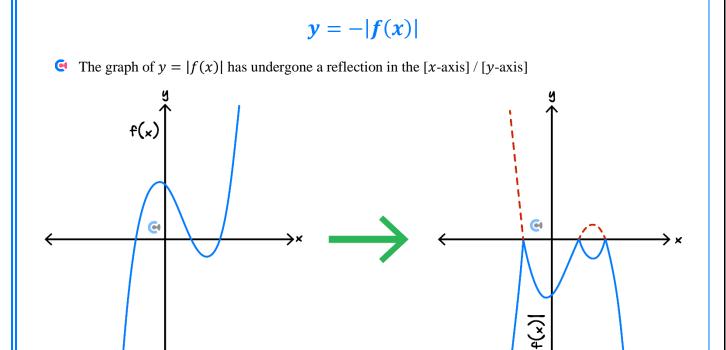
- **>** |−6| = 6
- **→** |6| = 6

Discussion: Could |f(x)| be negative? Hence what does the graph of |f(x)| look like?

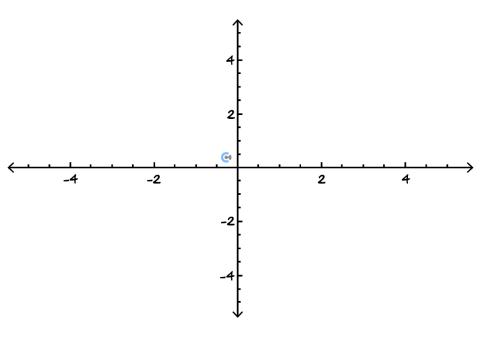
The output of y = |f(x)| must be: ______.


$$|f(x)| = {$$


Graphs of composite modulus functions

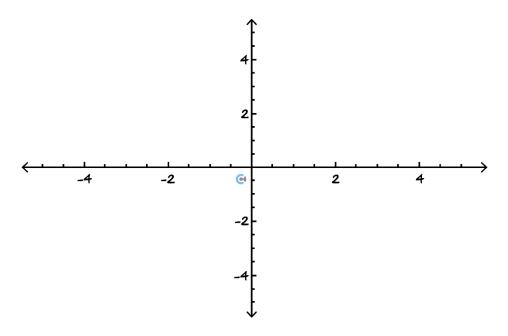

Modulus is the Outer Function.

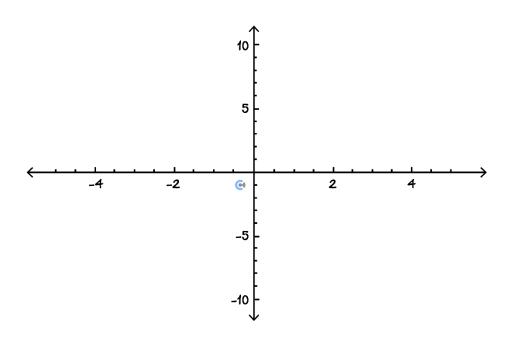
$$y = |f(x)|$$



Question 8 Walkthrough.

Sketch the following graph over the specified domain. Label all key intercepts.


$$y = |(x-1)(x+2)|$$



Sketch the following graphs over the specified domain. Label all key intercepts.

a.
$$y = |(x-1)^2 - 1|$$

b.
$$y = -|(x+2)(x-2)|$$

<u>Discussion:</u> What would happen if f(x) turned into f(|x|)?

ightharpoonup f will always take a [positive] / [negative] value, even if the x value is negative.

→ -

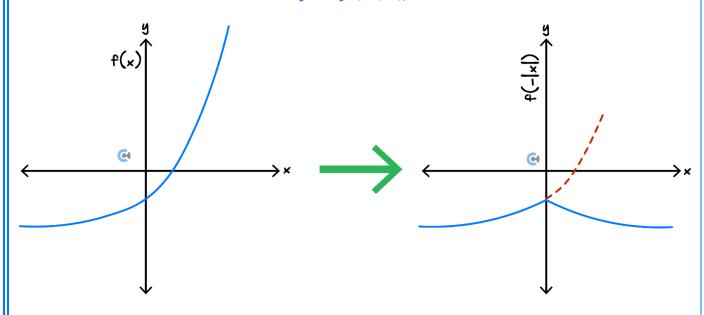
- At:
 - x = -2:_____
 - x = 2:

<u>Discussion:</u> Since f(|-2|) = f(|2|), where is f(|x|) symmetrical about?

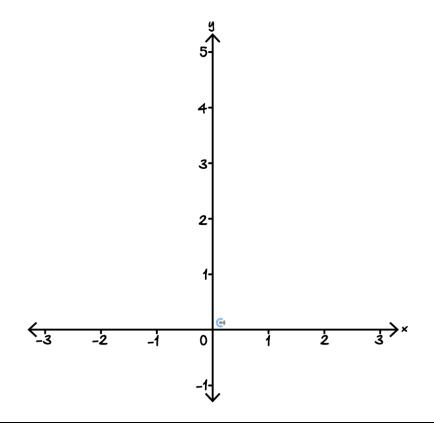

Graphs of composite modulus functions

Modulus is the Inside Function

$$y = f(|x|)$$

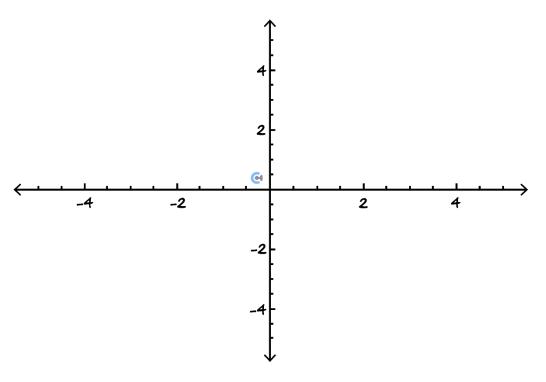

• Take the positive side and flip it to the other side.

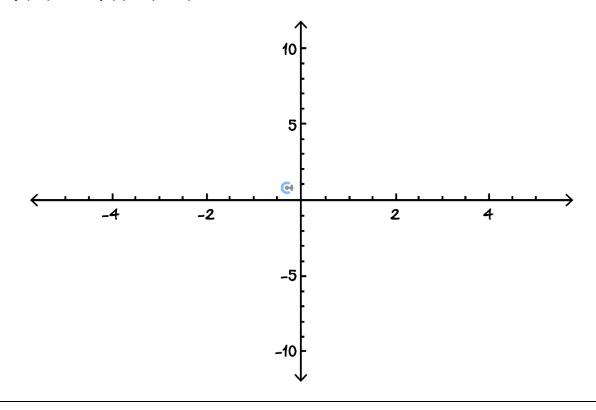
• Take the negative side and flip it to the other side.


$$y = f(-|x|)$$

Question 10 Walkthrough.

Sketch the graph below.


$$y = f(|x|)$$
, where $f(x) = (x + 1)(x + 2)$



Sketch the graph below.

a. y = f(-|x|), where f(x) = 2x - 1.

b. y = f(|x|), where $f(x) = (x+1)^2 + 1$.

Key Takeaways

- Graph of a simple modulus graph a|x-h|+k is like a straightened quadratic.
- \checkmark Wrapping modulus around the function makes the y value always non negative.
- \checkmark Wrapping the modulus around the x value makes the function symmetrical around the y-axis.
- \checkmark f(|x|) take the RHS and make it symmetrical about the y-axis.
- \checkmark f(-|x|) take the LHS and make it symmetrical about the y-axis.

Space for Personal Notes			

18

Section C: Partial Fractions

Sub-Section: Introduction to Partial Fractions

Discussion: What are partial fractions?

Partial fractions

The rules for partial fractions:

For every factor of this form in the denominator of the function	There will be partial fraction(s) of this form:
Linear factors: $\frac{1}{(ax+b)(cx+d)}$	
Repeated linear factor: $\frac{1}{(cx+d)^n}$	
Irreducible quadratic: $\frac{1}{(ax^2 + bx + c)}$	

• Must do long division before using any of the rules above.

Sub-Section: Case 1

Let's consider when we have two linear factors in the denominator!

Question 12 Walkthrough.

Perform partial fraction decomposition for $f(x) = \frac{2x-1}{(x-3)(x+2)}$.

NOTE: ALWAYS factorise the denominator by its factors first!

Perform partial fraction decomposition for the following functions.

a.
$$\frac{4x+2}{(x-1)(x-5)}$$

b.
$$\frac{5x+6}{x(x-3)}$$

Sub-Section: Case 2

How about repeated linear factors?

Question 14 Walkthrough.

Perform partial fraction decomposition for $f(x) = \frac{3x^2 - 7x + 4}{x(x-2)^2}$.

NOTE: When a linear factor is repeated, we repeat the splitting by that power.

Perform partial fraction decomposition for the following functions.

a.
$$\frac{4}{(x-1)(x+1)^2}$$

b.
$$\frac{8x+8}{(x-1)(x+3)^2}$$

Sub-Section: Case 3

Finally, non-factorisable quadratic factors!

Question 16 Walkthrough.

Perform partial fraction decomposition for $f(x) = \frac{2x^2}{(x-1)(x^2+1)}$.

NOTE: For quadratic factors that cannot be factorised, we split it as it is.

Perform partial fraction decomposition for the following functions.

a.
$$\frac{2x-2}{(x+1)(x^2+1)}$$

b.
$$\frac{15}{(x+1)(x^2+9)}$$

Key Takeaways

- ✓ Partial fractions is the process of splitting the factors in the denominator.
- ✓ Must factorise fully before doing partial fractions.
- Must do long division before doing partial fractions.
- ☑ Linear factors always have a constant at the top.
- ☑ Irreducible quadratic factors have a linear function at the top.

Contour Check

<u>Learning Objective</u>: [1.1.1]

Study Design

Graphs of sum, difference, product and composite functions involving functions of the types specified above (not including composite functions that result in reciprocal or quotient functions).

Key Takeaways

- ☐ Modulus finds a _____ of things.
- \square |a-b| is a ______ between a and b.
- For simple modulus equations, remove modulus and put _______.

Learning Objective: [1.1.2]

Study Design

Graphs of sum, difference, product and composite functions involving functions of the types specified above (not including composite functions that result in reciprocal or quotient functions).

Key Takeaways

- Graph of a simple modulus graph a|x-h|+k is like a straightened _______.
- ☐ Wrapping modulus around the function makes the y value always non ______.
- \square Wrapping the modulus around the x value makes the function symmetrical around the $\underline{\hspace{1cm}}$ axis.
- f(|x|) take the RHS and make it symmetrical about the _____-axis.
- lacksquare f(-|x|) take the _____ and make it symmetrical about the y-axis .

<u>Learning Objective</u> : [1.1.3]				
Key Takeaways				
Partial fractions is the process of				
☐ Must before doing partial fractions.				
☐ Must do before doing partial fractions.				
□ Linear factors always have a at the top.				
☐ Irreducible quadratic factors have a function at the top.				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

