

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Modulus & Partial Fractions [1.1]

Homework

Homework Outline:

Compulsory Questions	Pg 2 - Pg 18
Supplementary Questions	Pg 19 - Pg 30

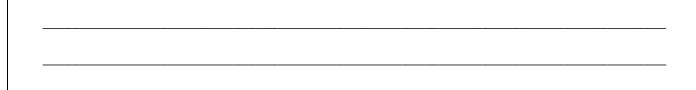
Section A: Compulsory Questions

Sub-Section: Solving Simple Modulus Equations and Inequalities

Qu	estion 1
Eva	aluate:
a.	– 5
b.	- -16
c.	$ 3^2 - 3 \times 2 + 9 $

Solve the following equations for x.

a. |x-2|=4



b. |2x - 3| = 5

 $\mathbf{c.} \quad |1 - \sqrt{x}| = 5$

Ouestion	3
Ouesuon	J

Solve the following equations for x.

a. |x| < 3

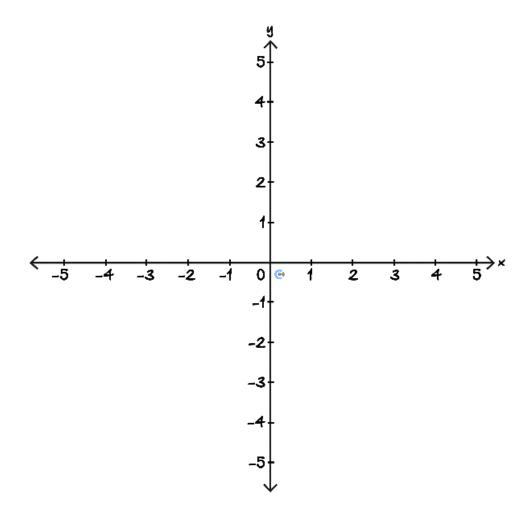
b.	2x -	1	>	1

c.	3x + 1 > 10

Ouestion	4 Tech-Active	Α.
()ucsuon	7 ICUI-ACUV	_

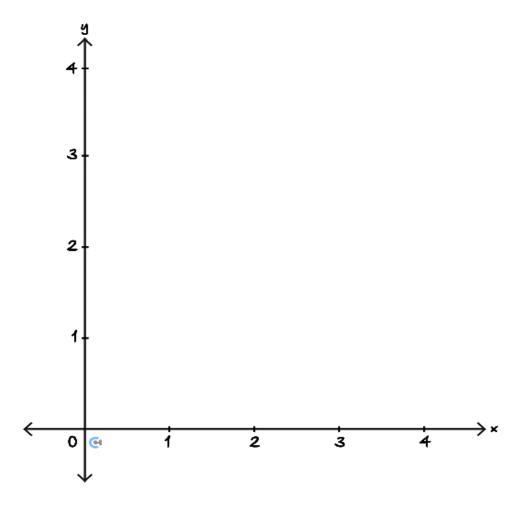
Solve the following equality for x.

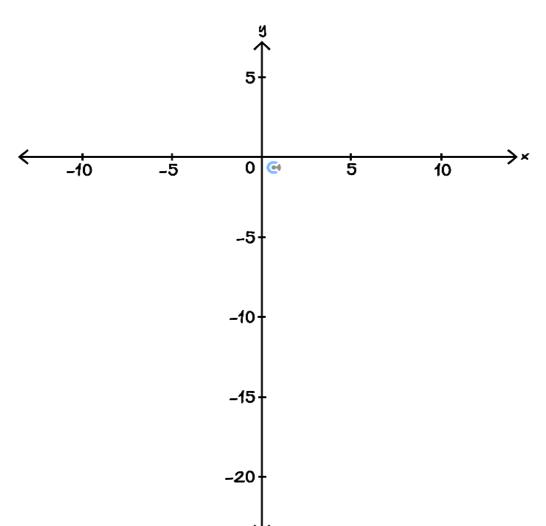
$$\left|\sqrt{2x} - 1\right| = 3$$



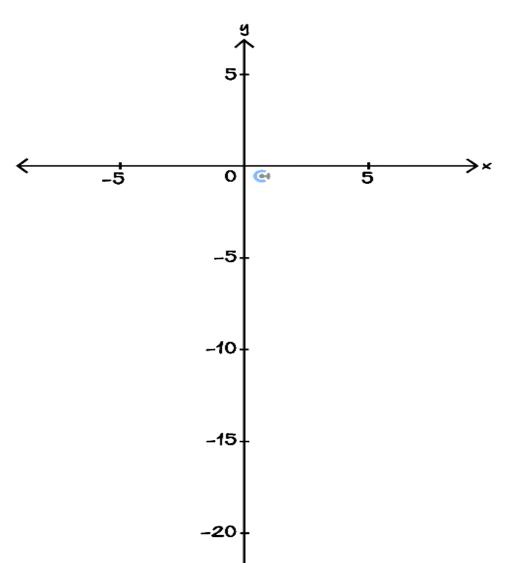
<u>Sub-Section</u>: Graphing Modulus Functions and Composite Modulus Functions

Question 5


Sketch the graph of the function f(x) = 2|x-1| - 4 on the axes below. Label the axis intercepts and the vertex of the graph.


Sketch the graph of the function f(x) = |(x-2)(x-1)|. Label any axis intercepts.

Sketch the graph of the function y = f(|x|) where $f(x) = x^2 - 5x - 14$. Label any axis intercepts.



Question 8 Tech-Active.

Sketch the graph of the function y = f(-|x|) where f(x) = (x - 5)(x + 4).

Sub-Section: Apply Partial Fractions to Find a Decomposed Form


Question 9

Perform partial fraction decomposition to write the following functions in the form specified below.

a.
$$\frac{7x-8}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$$

c. ($\frac{9x+5}{x+1)(x^2+3)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+3}$
_	
_	
_	
_	
-	
_	

Onestion	1	(

Perform partial fraction decomposition to the following functions.

a .	11x+19		
a.	$x^2 + 4x - 5$		

b.	$6x^2 + x - 2$
υ.	$x^3 - 2x^2$

c.	$\frac{7x^2+x-2}{x^3-x^2}$

Ouestion	11
Oueshon	11

Perform partial fraction decomposition to the following functions.

a	$x^{3}-1$
a.	$x^2 + 2x - 3$

 $x^3 - 2x^2$

-	 	
$2x^4 - 3x^3 + 5x^2 - 3x - 2$		

c.	$\frac{2x^3 - x^2 + 5}{(x-1)^2}$

Question	12	Tech-	Active.
----------	----	-------	---------

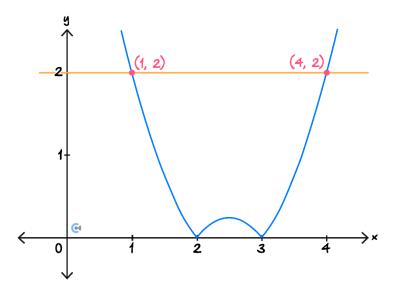
erform partial fraction decomposition to the function $f(x) = \frac{x^4 + 3x^3 + 11x^2 + 9x + 11}{(x-1)(x^2 + 2x + 4)}$.	

Space for Personal No	otes		


Sub-Section: The 'Final Boss'

Question 13

Consider the function $f(x) = x^2 - 5x + 6$.


a. Evaluate |f(-2)| and f(|-2|).

b. Sketch the graph of y = |f(x)|.

CONTOUREDUCATION

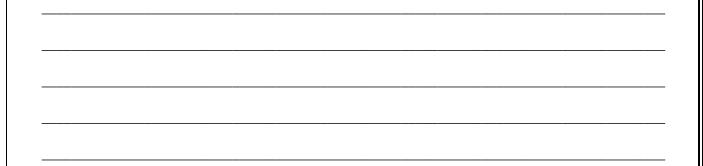
c. Solve for the values of x that satisfy the inequality |f(x)| < 2.

d. State the value of k, so that the equation |f(x)| = k has three solutions.

Section B: Supplementary Questions

Sub-Section: Solving Simple Modulus Equations and Inequalities

Qu	sestion 14
Eva	aluate:
a.	- -4
b.	5 + -6
c.	$ -8 ^2$



Solve the following equations for x.

a. |3 - 2x| = 1

b.	$ x^2 = 2$			

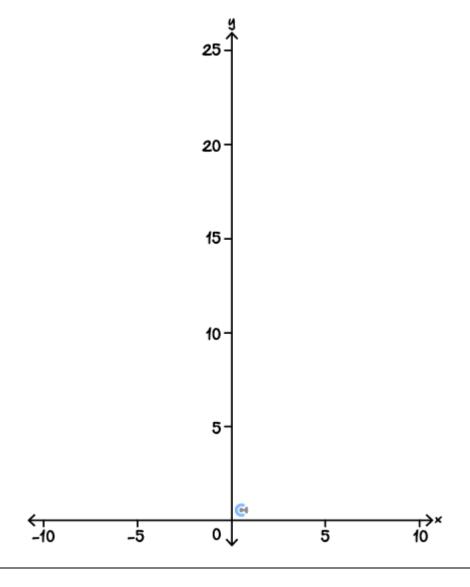

Solve the following equations for x.

a. |-x| < 2

b. |2x-1| > 5

c. |2x - 5| + 3 < 4

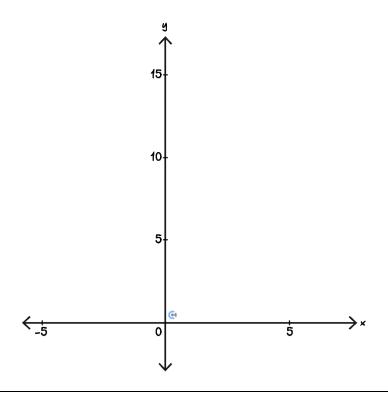
Qu	uestion 17	
Со	onsider the following equation $ x ^2 - 7 x + 10 = 0$.	
a.	Before solving the equation, how many solutions do you expect this equation will have? Why?	
b.	Solve the equation.	
		_
		_
Sp	pace for Personal Notes	

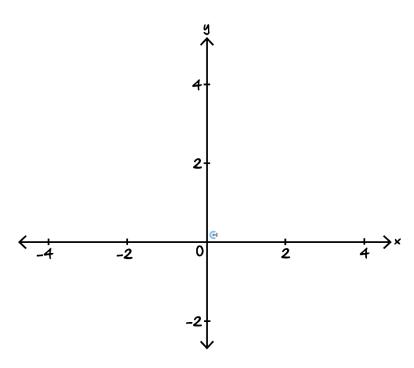


<u>Sub-Section</u>: Graphing Modulus Functions and Composite Modulus Functions

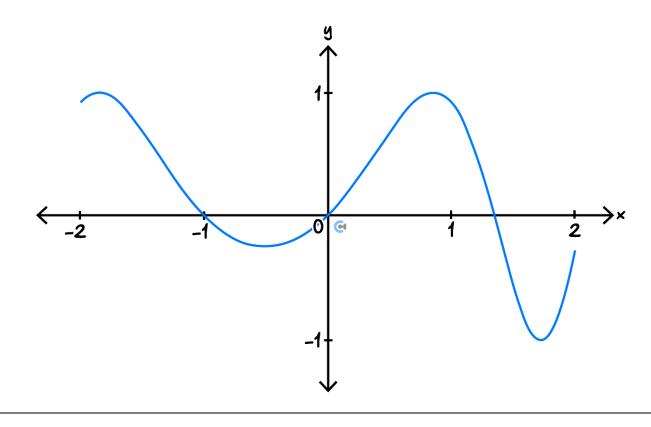
Question 18

Sketch the graph of the function f(x) = 4|x-1| + 12 on the axes below. Label the axis intercepts and the vertex of the graph.




Sketch the graph of the function f(x) = |(x-2)(x+1)(x-5)|. Label any axis intercepts.

Question 20


Sketch the graph of the function y = f(|x|) where $f(x) = (x - 1)^2$. Label any axis intercepts.

Sketch the graphs of the functions y = f(|x|) and y = f(-|x|) in the interval -2 < x < 2 where the graph of y = f(x) is shown below.

Sub-Section: Apply Partial Fractions to Find a Decomposed Form

Question 22

Perform partial fraction decomposition to write the following functions in the form specified below.

a. $\frac{6x+2}{(x-3)(x+1)} = \frac{A}{x-3} + \frac{B}{x+1}$

 $\mathbf{b.} \quad \frac{5x^2 - 24x + 29}{(x - 3)^2(x - 2)} = \frac{A}{x - 3} + \frac{B}{(x - 3)^2} + \frac{C}{x - 2}$

 $\mathbf{c.} \quad \frac{7x^2 - 3x + 14}{(x - 1)(x^2 + 3x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 3x + 5}$

Question 23

Perform partial fraction decomposition to the following functions.

a.	$\frac{8x-12}{x^2-2x-3}$	

CONTOUREDUCATION

b.	$\frac{7x^2 + 6x - 8}{x^3 + 2x^2}$
	6v3_v 6
c.	$\frac{6x^3 - x - 6}{x^4 - 2x^3}$

Onestion	24

Perform partial fraction decomposition to the following functions.

	$x^3 - 4x^2 + 18$
a.	$x^2 + x - 2$

_	$x^4 + x^3 - x^2 - x - 3$
b.	r ² -r-2

c.	$\frac{7x^4 + 10x^3 + 24x^2 - 38x - 35}{(x-1)(x^2 + 2x + 5)}$

rm partial fraction dec	omposition to the functi	on $f(x) = \frac{x^6 + x^6}{x^6}$	$\frac{4x^5 - x^4 + x^3 - 27x^2 - 9x + 22}{(x^2 - 2)(x^2 + x + 4)}$	
-	•		$(x-2)(x^2+x+4)$	

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

