

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ AOS 1 SAC 1 [1.0]

SAC 1 Solutions

40 Marks. 5 Minutes Reading. 40 Minutes Writing.

Section A: SAC Questions (40 Marks)

Question 1 (6 marks)

a. If |x| = 5, find the possible values of |2x + 3|. (1 mark)

13 and 7

b. Solve the equation 2|x| - 3 = 2. (1 mark)

 $x = \pm \frac{5}{2}$

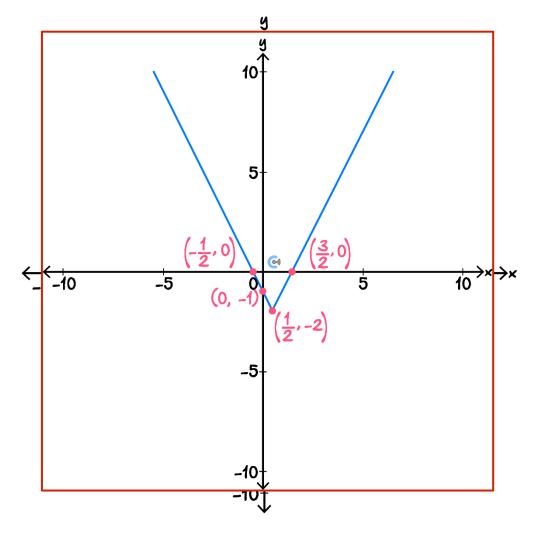
c. Solve the inequality |2x + 1| < 5. (1 mark)

-3 < x < 2

d. Solve the equation $|x^2 - 4x + 1| = 4$. (3 marks)

$$x=-(\sqrt{5}-2)$$
 or $x=1$ or $x=3$ or $x=\sqrt{5}+2$

Space for Personal Notes

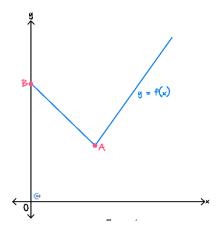


Question 2 (4 marks)

You are given that:

$$f(x) = |2x - 1| - 2$$

a. Sketch the graph of f(x) on the set of axes below, clearly indicating the coordinates of any points where the graph of f(x) meets the coordinate axes. (2 marks)



b. Using your graph, or otherwise, find the values of x for which $f(x) \ge 3$. (2 marks)

~ \ \ 2 am ~ /
$x \sim 3$ or $x \sim -1$

Question 3 (6 marks)

The above figure shows a sketch of part of the graph of y = f(x), where:

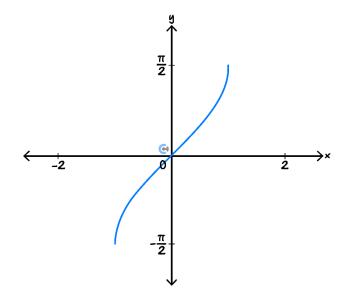
$$f(x) = a|h - x| + b$$

a. You are given that the coordinates of A are (3,5) and the coordinates of B are (0,11). Find the values of a, h and b. (2 marks)

$$a = 2, h = 3, b = 5$$

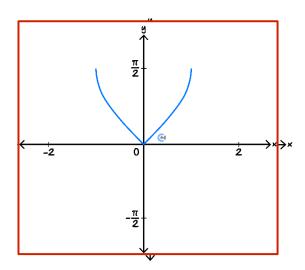
b. Solve the equation $f(x) = \frac{1}{2}x + 30$ for x. (3 marks)

 $x = -\frac{38}{5} \text{ or } x = \frac{62}{3}$

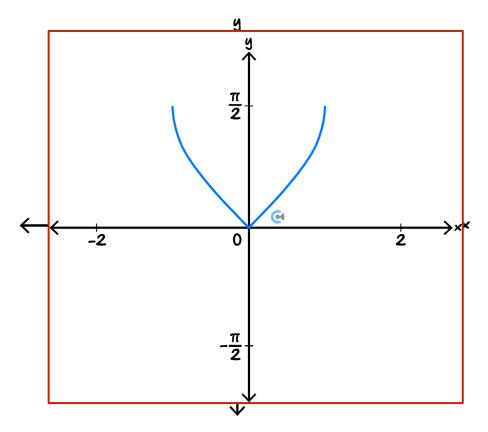

Given that the equation f(x) = k, where k is a constant, has two distinct roots.

c. State the set of possible values for k. (1 mark)

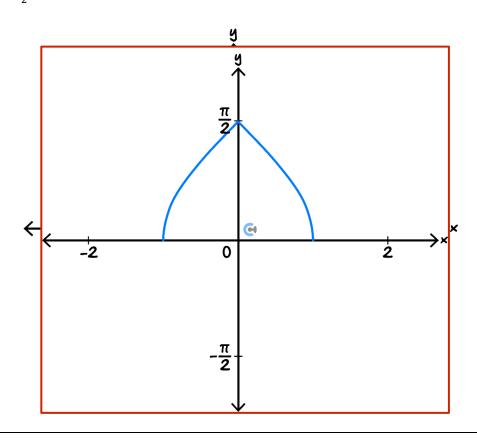
 $k \ge 5$


Question 4 (4 marks)

The graph of y = f(x) is shown on the set of axes below:



On the set of axes below, sketch the graphs of:

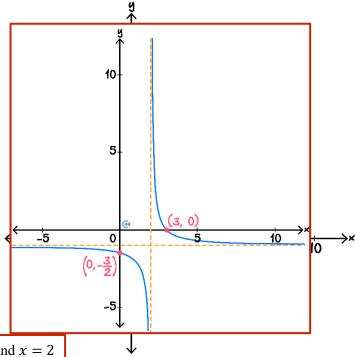

a. y = |f(x)|. (1 mark)

b. y = f(|x|). (1 mark)

c. $y = f(-|x|) + \frac{\pi}{2}$. (2 marks)

Question 5 (3 marks)

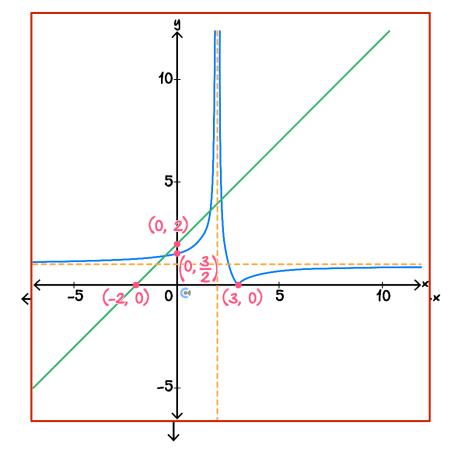
Solve the following inequality for x:


$$|2x - 1| - 1 < |x - 1|$$

$$x \in (-1,1) \text{ or } -1 < x < 1$$

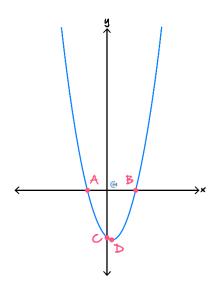
Question 6 (8 marks)

Consider the function $f: R\setminus\{2\} \to R, f(x) = \frac{1}{x-2} - 1.$

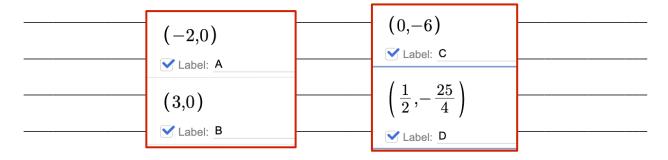

a. Sketch the graph of y = f(x) on the set of axes below, labelling all asymptotes and axial intercepts. (2 marks)

Asymptote at y = 1 and x = 2

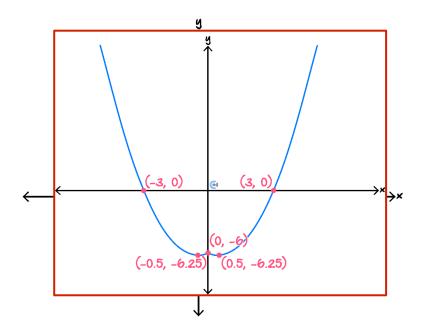
b. Hence, on the set of axes below, sketch the graph of y = |f(x)|, labelling all asymptotes and axial intercepts. (2 marks)


- **c.** On the same set of axes above in **part b.**, sketch the line y = x + 2, labelling the axial intercepts. (1 mark)
- **d.** Hence, solve the inequality $|f(x)| \le x + 2$. (3 marks)

$$\frac{-(\sqrt{5}-1)}{2} \le x \le \frac{\sqrt{5}+1}{2} \text{ or } x \ge \frac{\sqrt{29}-1}{2}$$


ONTOUREDUCATION

Question 7 (9 marks)


The graph of y = g(x), where $g(x) = x^2 - x - 6$ is shown below:

a. Write down the coordinates of A, B, C and D. (2 marks)

b. On the set of axes below, sketch the graph of y = g(|x|), labelling all turning points and axial intercepts. (3 marks)

- **c.** Find all the values of *k* for which the equation g(|x|) + k = 0 has:
 - i. Three distinct solutions. (1 mark)

k = 6

ii. Four distinct solutions. (1 mark)

 $6 < k < \frac{25}{4}$

iii. Two distinct solutions. (2 marks)

 $k < 6 \text{ or } k = \frac{25}{4}$

Space for Personal Notes