

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
AOS 1 Revision [1.0]
Contour Check

Contour Check

[1.1] - Modulus & Partial Fractions (Checkpoints)

- [1.1.1] Solving Simple Modulus Equations and InequalitiesPg 3-6
- ☐ [1.1.2] Graphing Modulus Functions and Composite Modulus Functions Pg 7-9
- [1.1.3] Apply Partial Fractions to Find aDecomposed FormPg 10-15

[1.2] - Modulus & Partial Fractions Exam Skills (Checkpoints)

[1.2.1] - Solving Advanced Algebra and InequalitiesPg 16-19

[1.3] - Sequences & Series (Checkpoints)

- [1.3.1] Finding Sequence from Recurrence RelationsPg 20-21
- [1.3.2] Finding Arithmetic Sequence, Mean and SeriesPg 22-24
- [1.3.3] Finding Geometric Sequence, Mean and Series.Pg 25-27
- □ [1.3.4] Infinite Geometric Series Pg 28-29

[1.4] - Sequences & Series Exam Skills (Checkpoints)

- [1.4.1] Find Sequences from Two TermsPg 30-32
- ☐ [1.4.2] Apply Recurrence Relation To
 Different Types of Sequences Pg 33-36

[1.1 - 1.4] - Overall Exam 1 Ouestions Pg 37-47

[1.1 - 1.4] - Overall Exam 2 Questions Pg 48-65

Section A: [1.1] - Modulus & Partial Fractions (Checkpoints)

Sub-Section [1.1.1]: Solving Simple Modulus Equations and Inequalities

Qu	estion 1
Eva	ıluate:
a.	- -4
b.	5 + - 6
c.	$ -8 ^2$

Question 2

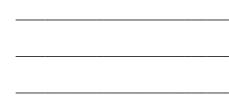
Solve the following equations for x.

a. |3 - 2x| = 1

b. $|x^2| = 2$

c. $|x^2 + 1| = 2$

Question	2
Question	J

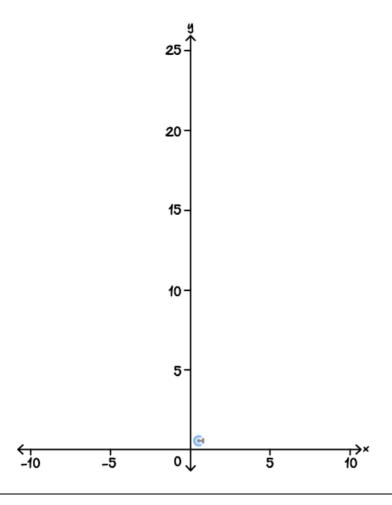

Solve the following equations for x.

a. |-x| < 2

b. |2x - 1| > 5

c. |2x - 5| + 3 < 4

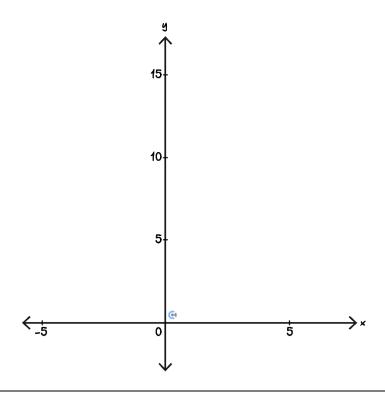
Qu	estion 4						
Co	Consider the following equation $ x ^2 - 7 x + 10 = 0$.						
a.	Before solving the equation, how many solutions do you expect this equation will have? Why?						
D.	Solve the equation.						
	, 						
							
П							



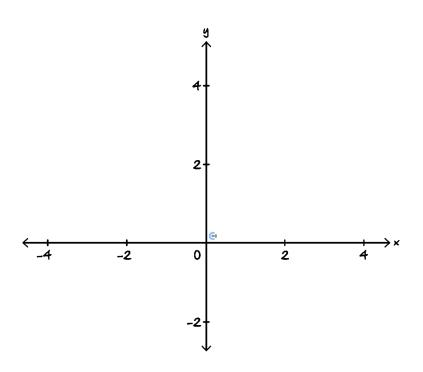
<u>Sub-Section [1.1.2]</u>: Graphing Modulus Functions and Composite Modulus Functions

Question 5

Sketch the graph of the function f(x) = 4|x-1| + 12 on the axes below. Label the axis intercepts and the vertex of the graph.

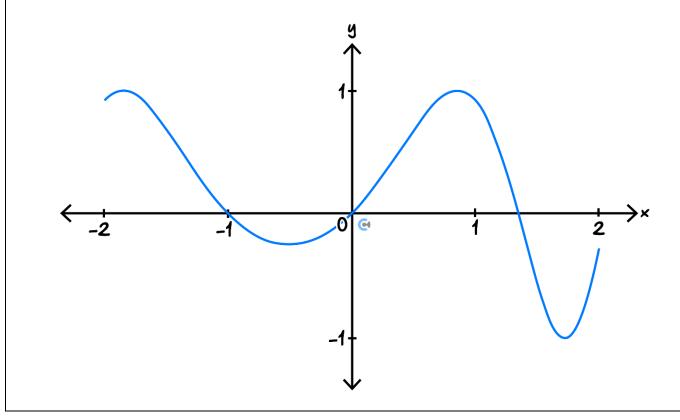


Question 6


Sketch the graph of the function f(x) = |(x-2)(x+1)(x-5)|. Label any axis intercepts.

Question 7

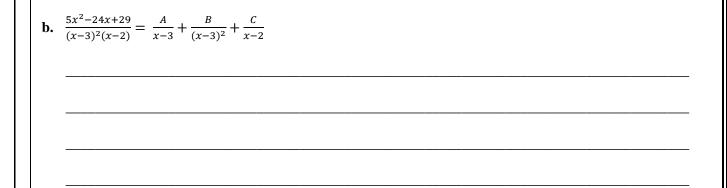
Sketch the graph of the function y = f(|x|) where $f(x) = (x - 1)^2$. Label any axis intercepts.



Question 8

Sketch the graphs of the functions y = f(|x|) and y = f(-|x|) in the interval -2 < x < 2 where the graph of y = f(x) is shown below.

<u>Sub-Section [1.1.3]</u>: Apply Partial Fractions to Find a Decomposed Form


Question 9

Perform partial fraction decomposition to write the following functions in the form specified below.

a.
$$\frac{6x+2}{(x-3)(x+1)} = \frac{A}{x-3} + \frac{B}{x+1}$$

c.	$\frac{7x^2 - 3x + 14}{(x - 1)(x^2 + 3x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 3x + 5}$

Question 10

Perform partial fraction decomposition to the following functions.

a.	$\frac{8x-12}{x^2-2x-3}$				

CONTOUREDUCATION

b.	$\frac{7x^2+6x-8}{x^3+2x^2}$
c.	$\frac{6x^3 - x - 6}{x^4 - 2x^3}$

\sim	4.	1	-
	OCTION	•	
Vu	estion	1	J

Perform partial fraction decomposition to the following functions.

	$x^3 - 4x^2 + 18$
a.	$x^2 + x - 2$

h	$x^4 + x^3 - x^2 - x - 3$
b.	$x^2 - x - 2$

$\frac{7x^4 + 10x^3 + 24x^2 - 38x - 35}{(x-1)(x^2 + 2x + 5)}$		

On	estion	12
V u	esuon	14

-			

Space for	Personal	Notes
-----------	----------	-------

Section B: [1.2] - Modulus & Partial Fractions Exam Skills (Checkpoints)

Sub-Section [1.2.1]: Solving Advanced Algebra and Inequalities

pace for Personal N	lotes			

Question 14	
Solve the equation $ 2x - 3 = -2 x + 1 + 5$ for $x \in \mathbb{R}$.	

Space for Personal Notes	

Question 15

Solve the inequality $\frac{1}{|x-4|} + 2 < x + 6$ for $x \in \mathbb{R}$.

Question	16
Question	10

Solve the inequality $\left| \frac{x-4}{x+1} \right| - 3 > |x+2|$ for $x \in \mathbb{R}$.

Section C: [1.3] - Sequences & Series (Checkpoints)

Sub-Section [1.3.1]: Finding Sequence from Recurrence Relations

Question 17	
Given $t_n = 6 + 4 \cdot t_{n-1}$ and $t_1 = 3$, find the value of t_3 . Is the sequence an arithmetic sequence, geometric sequence, or neither?	
	_
	_
	_
	_
	_
	_
Question 18	
Given $t_n = t_{n-1}^{t_{n-1}}$ and $t_1 = 2$, find the value of n so that, $t_n = 256$.	
	_
	_
	_
	_
	_
	_

Question 19				
Given $t_n = t_{n-1}^2$ and t_1	= 3, find the smalle	est n so that, $t_n >$	> 100.	
Question 20				
Given $t_n = -t_{n-1}$ and for the general term t_n .			as in the sequenc	
Space for Personal N	otes			

<u>Sub-Section [1.3.2]</u>: Finding Arithmetic Sequence, Mean and Series

Question 21					
Consider the arithmetic sequence, $t_n = t_{n-1} + 5$ and $t_1 = 2$.					
a. Find t_{10} .					
b. Find the arithmetic mean of t_3 and t_{10} .					

c. 1	Evaluate S_4 .	
-		
-		
-		
-		
-		
-		
Que	stion 22	
Find	the value of x so that, the arithmetic mean of 8 and $2x + 6$ is 17.	
-		
-		
-		
-		
-		
-		
 Spa	ce for Personal Notes	

Question 23				الزار
Let $t_n = 5 + dn$. Find the	value of d if, $S_4 = 50$.			
Question 24				ازرزر
Fiven that $t_4 = 16$ and S_8	= 136, find the values of a	the first term) and d	(the common differer	nce) and hence,
vrite down the general term			`	
	In t_n of the sequence.			
vrite down the general term	In t_n of the sequence.			
vrite down the general term	In t_n of the sequence.			

<u>Sub-Section [1.3.3]</u>: Finding Geometric Sequence, Mean and Series

Qu	estion 25
Giv	$t_n = 4t_{n-1} \text{ and } t_1 = 3.$
a.	Find t_3 .
b.	Find the geometric mean of t_2 and t_5 .
	- <u></u> -

c.	Evaluate S_5 .	
	estion 26	
Sup	pose that t_n is a geometric series such that, $t_5 = 40.5$ and $t_9 = 3280.5$. Find the common ratio of the ometric series.	
Spa	ace for Personal Notes	

Question 27	Ú
Let $t_n = 4 \cdot r^n$. Find the value(s) of r given that, the geometric mean between t_4 and t_8 is 256.	
Question 28))
Given $t_n = 6 \cdot t_{n-1}$ and $t_1 = 7$. Find the smallest value of n so that, S_n first exceeds 1000.	
Space for Personal Notes	

Sub-Section [1.3.4]: Infinite Geometric Series

On	estion	20
Qu	esuon	4

Find the value of the infinite series:

$$\frac{7}{2} - \frac{7}{4} + \frac{7}{8} - \frac{7}{16} + \cdots$$

Question 30

Find the value of the infinite series:

$$2 + \frac{2}{7} + \frac{2}{49} + \frac{2}{343} + \cdots$$

O	nestion	31

Find the value of r, given that:

$$5 + 5r + 5r^2 + 5r^3 + \dots = \frac{45}{8}$$

-	 	 	

Question	32
Question	

Find the value of *a*, given that:

$$a - \frac{a}{6} + \frac{a}{36} - \frac{a}{216} + \dots = \frac{54}{5}$$

Section D: [1.4] -Sequences & Series Exam Skills (Checkpoints)

<u>Sub-Section [1.4.1]</u>: Find Sequences from Two Terms

Question 33	Í
Define the arithmetic sequence in terms of n if $t_3 = -10$ and $t_{13} = 10$.	

Question 34

Define possible geometric sequences in terms of n if $t_4 = \frac{1}{4}$ and $t_7 = \frac{27}{4}$.

Onestion	25

Consider the arithmetic, a_n sequence with the following properties, $a_3 = 8$, $a_6 = -\frac{5}{2}$.

 g_n is a geometric sequence with the property that $g_3=a_3$ and $g_5=a_5$.

Find g_n in terms of n.

Question 36	الالالا
Consider the following sequence, $a_n = b^n + c + dn$.	
It is known that $a_1 = 0$, $a_2 = 1$ and $a_3 = 4$.	
Find the values of b , c and d .	

<u>Sub-Section [1.4.2]</u>: Apply Recurrence Relation To Different Types of Sequences

Qu	nestion 37			
Co	nsider the sequence a_n , with the property that $a_3 = -5$ and $a_n = 2a_{n-1} + 1$.			
a.	Find a_1 .			
b.	Now assume that $a_1 = b$ and $a_n = 2a_{n-1} + 1$. Find a value of b such that $a_n = b$ for all values of n .			
	·			
Space for Personal Notes				

\mathbf{O}	nestion	38

Consider the sequence defined by the following recursive relationship:

$$f_{n+1} = \frac{f_n + f_{n-1}}{4}$$

The sequence can be expressed in the form $f_n = a^n$. Find all possible values of a.

CONTOUREDUCATION

Question 39

Consider the Fibonacci Sequence, f_n defined as such:

$$f_1 = f_2 = 1$$

$$f_{n+1} = f_n + f_{n-1} \text{ for } n \ge 2$$

Now consider the sequence $a_n = a2^n$.

Show that for a suitable value of a, $a_n > f_n$ for all values of n.

Question 40

Find a sequence, a_n that satisfies the recursive relationship, $a_n = 4a_{n-1} + 2a_{n-2} - 12a_{n-3} - 9a_{n-4}$, as well as the conditions:

$$a_2 = 2 \text{ and } a_3 = 4$$

Hint:
$$((x-1)^2 - 4)^2 = x^4 - 4x^3 - 2x^2 + 12x + 9$$

Section E: [1.1-1.4] - Overall Exam 1 Questions

Question 41
Solve the equation $ x - 4 = 2 x + 8 $.

Question 42
Solve the inequality $x + 2 > \frac{1}{\sqrt{x^2 - 4x + 4}}$ for $x \in \mathbb{R}$.

Question 43


a. Perform partial fraction decomposition for $f(x) = \frac{6x}{(x-1)(x+2)}$.

b. Express $g(x) = \frac{x^3 + 8}{(x+2)(x^2 + 4x + 4)}$ in the form $\frac{A}{(x+2)^2} + \frac{B}{x+2} + C$ for real numbers A, B and C.

Question 44

Let
$$f(x) = 2x^2 - 4x - 1$$
.

Sketch the graph of y = |f(x)| on the axis below. Label all axes intercepts and turning points.

Question 45

Consider the function f with rule $f(x) = \frac{x^2 + x + 4}{x + 1}$.

a. Show that the rule for the function f can be written as $f(x) = x + \frac{4}{x+1}$.

b. Solve the inequality f(x) > x + 5 for $x \in \mathbb{R}$.

Qı	nestion 46 (3 marks)
Co	onsider the arithmetic sequence, a_n with the following properties:
	$a_5 = 7 \text{ and } a_8 = 19$
a.	Find $a_2 - a_1$. (1 mark)
h	Find a_1 . (1 mark)
0.	
c.	Hence, find a_n for any natural number n . (1 mark)
Sp	pace for Personal Notes

Question 47 (4 marks) Consider the following geometric progression, $b_n = 2 \times \left(-\frac{2}{3}\right)^{n-3}$. **a.** Find the geometric mean of b_1, b_2, \dots, b_5 . (2 marks) **b.** Evaluate $5b_1 - 5b_2 + 5b_3 + \dots (2 \text{ marks})$

Question 48 (4 marks)
Consider a positive sequence a_n with $a_n > 0$ for all natural numbers n .
a. If $a_1 + a_2 + \ldots + a_n < 5$ for all values of n , show that there exists an integer k , such that for all $n > k$, $a_n < 1$. (3 marks)
·
b. Explain why a_{1000} is not necessarily less than 0.1. (1 mark)
Space for Personal Notes

Question 49 (4 marks)
Consider a sequence, $\phi_n = ab^n + cd^n$, defined by the following recursive relationship:
$\phi_{n+1} = 5\phi_n - 6\phi_{n-1}$
If $\phi_2 = 7$ and $\phi_3 = 17$, find possible values of a, b, c and d .
Space for Personal Notes

estion 50 (5 marks)
nsider the following two sequences:
$a_n = 3n - 1$ and $b_n = 3 \times 2^{-n}$
Express the sequence $c_n = b_{a_n}$ in terms of n . (1 mark)

b.	The	e arithmetic mean of $a_1, \ldots a_p$ is 17.
	i.	Find the value of <i>p</i> . (1 mark)
	ii.	Hence, or otherwise find the geometric mean of $c_1, \dots c_p$. (2 marks)
c.	Eva	aluate $c_1 + c_2 + \dots (1 \text{ mark})$

Section F: [1.1 - 1.4] - Overall Exam 2 Questions

Question 51 (1 mark)

The equation |2x - 3| = -|x + 2| + 6, where $x \in \mathbb{R}$, has solution(s):

- **A.** $x = -1, \frac{7}{3}$
- **B.** $x = \frac{5}{3}$
- **C.** x = -1
- **D.** $x = 7, \frac{5}{3}$

Question 52 (1 mark)

The graph of y = |2x - 1| - |x - 3| is the same as the graph of y = -2 - x for which of the following ranges of x values:

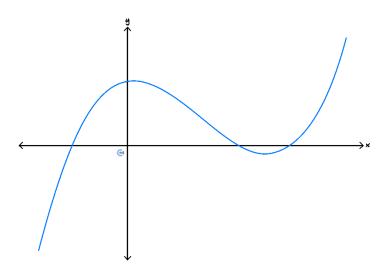
- **A.** $x > \frac{1}{2}$
- **B.** $x \le \frac{1}{2}$
- C. $\frac{1}{2} \le x \le 3$
- **D.** $x \ge 3$

Question 53 (1 mark)

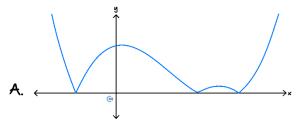
Which one of the following, where A, B, C, and D are non-zero real numbers, is a partial fraction form for the expression?

$$\frac{x-3}{(x^2-1)(x-2)}$$

- **A.** $\frac{A}{x^2-1} \frac{B}{(x-2)^2}$
- **B.** $\frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x-2}$
- C. $\frac{Ax+B}{x^2-1} + \frac{C}{x-2} + \frac{Dx}{x-2}$
- **D.** $\frac{A}{x^2-1} + \frac{C}{x-2} + \frac{D}{x-4}$

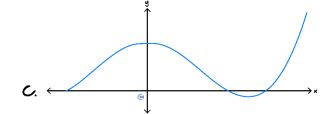

Question 54 (1 mark)

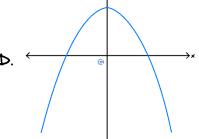
The equation $|x^2 + 2x - 8| = k$, where k is a real number has exactly four solutions for:


- **A.** k = 9
- **B.** 0 < k < 9
- **C.** k > 9
- **D.** k > 0

Question 55 (1 mark)

Part of the graph of y = f(x) is shown below.




The function f(|x|) is best represented by:

Question 56 (1 mark)

Consider the following sequence a_n defined recursively.

$$a_1 = 2$$

$$a_2 = 3$$

$$a_n = a_{n-1} + a_{n-2}$$

Evaluate a_{10} .

- **A.** 55
- **B.** 89
- **C.** 144
- **D.** 233

Question 57 (1 mark)

Consider the geometric sequence, a_n .

It is known that $a_1 + a_2 + a_3 + ... = 4$ and that $a_1 = 2$.

The geometric mean of $a_1, a_2 \dots a_8$ is:

- A. $\frac{1}{4\sqrt{2}}$
- **B.** $\frac{1}{32}$
- C. $\frac{1}{1048576}$
- **D.** $\frac{1}{2}$

Question 58 (1 mark)

The sequence with consecutive entries 1, -3, 5, -7 could be:

- **A.** An arithmetic sequence.
- **B.** A geometric sequence.
- C. Either an arithmetic or a geometric sequence.
- **D.** Neither an arithmetic nor a geometric sequence.

Question 59 (1 mark)

How many entries are sufficient to uniquely determine all the entries in an arithmetic progression?

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 4

Question 60 (1 mark)

Let a_n be an arithmetic sequence and let $b_n = 2^n$ be a geometric sequence.

Define the sequence $c_n = b_{an}$.

The arithmetic mean of $a_1, a_2, \dots a_p$ is 3.

The geometric mean of $c_1, c_2, ..., c_p$ is:

- **A.** 9
- **B.** 5
- **C.** 8
- **D.** Impossible to tell with the current information.

Question 61 (1 mark)

Which one of the following, where *A*, *B*, *C* and *D* are non-zero real numbers, is the partial fraction form for the expression $\frac{2x^2+3x+1}{(2x+1)^2(x-1)}$?

A.
$$\frac{A}{2x+1} + \frac{B}{x-1} + \frac{C}{x+1}$$

B.
$$\frac{A}{2x+1} + \frac{B}{(2x+1)^2} + \frac{C}{(2x+1)^3} + \frac{Dx}{x^2-1}$$

C.
$$\frac{A}{2x+1} + \frac{Bx+C}{x^2-1}$$

D.
$$\frac{A}{2x+1} + \frac{B}{(2x-1)^2} + \frac{C}{x-1}$$

E.
$$\frac{A}{2x+1} + \frac{Bx+C}{(2x+1)^2} + \frac{D}{x-1}$$

Question 62 (1 mark)

For non-zero real constants a and b, where b < 0, the expression $\frac{1}{ax(x^2+b)}$ in partial fraction form with linear denominators, where A, B and C are real constants, is:

$$\mathbf{A.} \ \frac{A}{ax} + \frac{Bx + C}{x^2 + b}$$

B.
$$\frac{A}{ax} + \frac{B}{x + \sqrt{b}} + \frac{C}{x - \sqrt{b}}$$

$$\mathbf{C.} \ \frac{A}{ax} + \frac{B}{ax + \sqrt{|b|}} + \frac{C}{ax - \sqrt{|b|}}$$

D.
$$\frac{A}{x} + \frac{B}{x + \sqrt{|b|}} + \frac{C}{x - \sqrt{|b|}}$$

$$\mathbf{E.} \ \frac{A}{ax} + \frac{B}{\left(x + \sqrt{b}\right)^2} + \frac{C}{x + b}$$

Question 63 (1 mark)

For the interval $\frac{1}{2} \le x \le 3$, the graph of y = |2x - 1| - |x - 3| is the same as the graph of:

- **A.** y = -x 2
- **B.** y = 3x 4
- **C.** y = x + 2
- **D.** y = 3x + 2
- **E.** y = x 4

Question 64 (1 mark)

The graph of $y = \frac{x^2 + 2x + c}{x^2 - 4}$ where $c \in R$, will **always** have:

- **A.** Two vertical asymptotes and one horizontal asymptote.
- **B.** Two horizontal asymptotes and one vertical asymptote.
- C. A vertical asymptote with equation x = -2 and one horizontal asymptote with equation y = 1.
- **D.** One horizontal asymptote with equation y = 1 and only one vertical asymptote with equation x = 2.
- **E.** A horizontal asymptote with equation y = 1 and at least one vertical asymptote.

Question 65 (1 mark)

Given that *A*, *B*, *C* and *D* are non-zero rational numbers, the expression $\frac{3x+1}{x(x-2)^2}$ can be represented in partial fraction form as:

- $\mathbf{A.} \ \frac{A}{x} + \frac{B}{(x-2)}$
- **B.** $\frac{A}{x} + \frac{B}{(x-2)^2}$
- C. $\frac{A}{x} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$
- **D.** $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{(x-2)}$
- **E.** $\frac{A}{x} + \frac{Bx}{(x-2)} + \frac{Cx+D}{(x-2)^2}$

Question 66 (1 mark)

Consider the function with rule f(x) = |x - 3| + |x + 3| - a, where a is a real constant. The graph of $\frac{1}{f(x)}$ will have three asymptotes if the set of values of a is:

- **A.** {-3,3}
- **B.** { }
- **C.** [6, ∞)
- **D.** (−∞, 6)
- **E.** [-3,3]

Question 67 (1 mark)

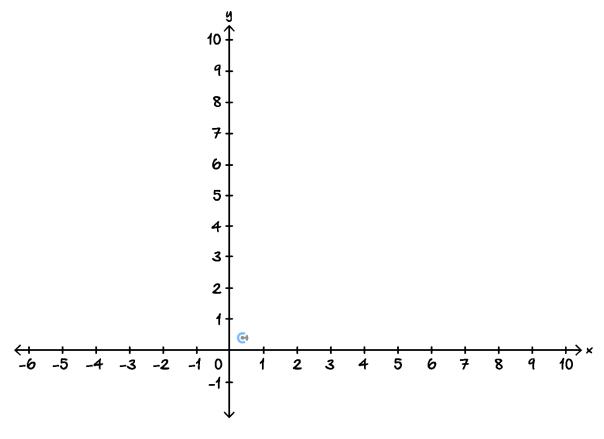
The expression $\frac{ax+b}{(2x-1)^2(x-1)}$ has partial fraction form $\frac{1}{(x+1)} - \frac{2}{(2x-1)} - \frac{1}{(2x-1)^2}$.

The values of a and b, where a and b are non-zero real constants, are respectively:

- **A.** 12 and 21
- **B.** 7 and 16
- \mathbf{C} . -5 and 4
- **D.** -7 and 2
- **E.** 3 and 6

Question 68 (1 mark)

Which one of the following, where A, B, C and D are non-zero real numbers, is a partial fraction form for the expression $\frac{x}{(x^2+1)(x-4)^2}$?

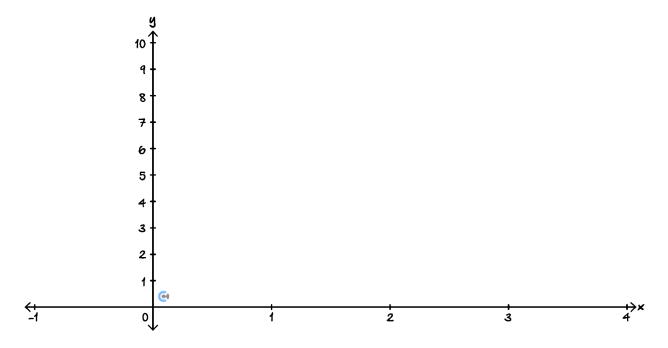

- **A.** $\frac{A}{x^2+1} \frac{B}{(x-4)^2}$
- **B.** $\frac{Ax+B}{x^2+1} \frac{C}{(x-4)^2} + \frac{Dx}{x-4}$
- C. $\frac{Ax+B}{x^2+1} + \frac{C}{(x-4)^2} + \frac{Dx}{x-4}$
- **D.** $\frac{A}{x^2+1} + \frac{C}{(x-4)^2} + \frac{D}{x-4}$
- **E.** $\frac{Ax+B}{x^2+1} + \frac{C}{(x-4)^2}$

Question 69

Consider the functions f(x) = |x - 2| + 1 and g(x) = -|x - 2| + 7.

a. Sketch the graphs of y = f(x) and y = g(x) on the axes below. Label all points of intersection, axes intercepts, and vertex points with coordinates.

b. Solve the inequality f(x) < g(x).



c.		
	i.	Find the value(s) of k for which the line $y = k - x$ never intersects the graph of $y = g(x)$.
		·
	ii.	Find the value(s) of k for which $k - x = g(x)$ has infinitely many solutions.
		, -
d.	Fin	d the area of the region bounded between the graphs of $y = f(x)$ and $y = g(x)$.
Sp	ace	for Personal Notes

Question 70

Consider the function $h(x) = \left| x^3 - \frac{9x^2}{2} + \frac{7x}{2} + 3 \right|$.

a. Sketch the graph of y = h(x) on the axis below. Label all axes intercepts.

b. Solve the inequality x + 5 > h(x) for $x \in \mathbb{R}$. Give your answer correct to two decimal places.

c. The equation h(x) = k, where k is a real number, has 6 real solutions. Find the possible value(s) of k. Give your answer correct to three decimal places.

Question 71 (9 marks)

An island has 10 fertile immortal monkeys. Every year, each pair of two fertile monkeys produces another monkey.

Let m_n denote the population of monkeys on the Island at the start of the year n.

a. Show that $m_n = 10 \times \left(\frac{3}{2}\right)^{n-1}$. (1 mark)

Hint: For this question simply approximate all answers using series and round at the end of calculations.

b.	At	the end of every year, 20 additional sterile immortal monkeys (they can't reproduce) are introduced.
	i.	Find the number of monkeys on the Island by the start of the 5 th year. (1 mark)
	ii.	After how many years will there be more fertile monkeys than sterile monkeys? (2 marks)

Emperor (the initial monkeys pay tax at the end of the first year). At the end of 10 years how many times the Jade Emperor received a tax form? (3 marks)	has
	•
	•
	•
	-
After p years the infertile monkeys start attacking the fertile monkeys, killing 1000 monkeys a year. State possible values of p , such that the population of fertile monkeys does not decrease. (2 marks)	the
	the
possible values of <i>p</i> , such that the population of fertile monkeys does not decrease. (2 marks)	the
	the

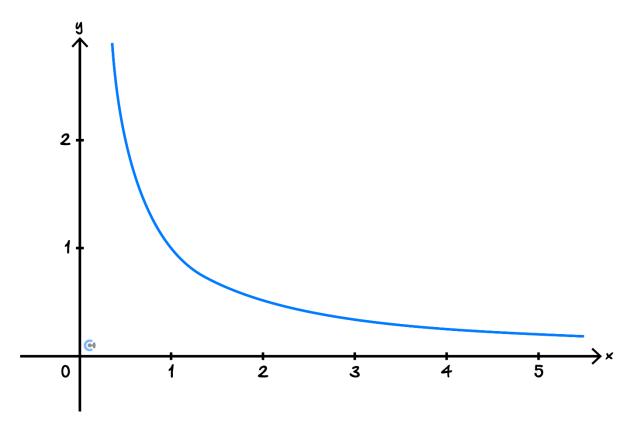
Question 72 (9 marks)

Consider the harmonic sequence, $h_n = \frac{1}{n}$ and its associated series $H_n = \sum_{i=1}^n h_i$.

a. Find H_5 . (1 mark)

b.

i. Show that $h_{2^{n}+1} + h_{2^{n}+2} + ... + h_{2^{n+1}} > \frac{1}{2}$. (2 marks)


ii. Hence, or otherwise find the smallest value of n such that $H_n > 3$. (1 mark)

c. The area bounded by the graph $y = \frac{1}{x}$, the x-axis, and the lines x = 1, x = a for a > 1 is equal to $\log_e(a)$.

The graph of $y = \frac{1}{x}$ is shown below.

Draw a region with an area H_5 and use that region to argue why for all $m \in R$ there exists an n such that $H_n > m$. (4 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- ▶ Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

