+

Website: contoureducation.com.au | Phone: 1800 888 300

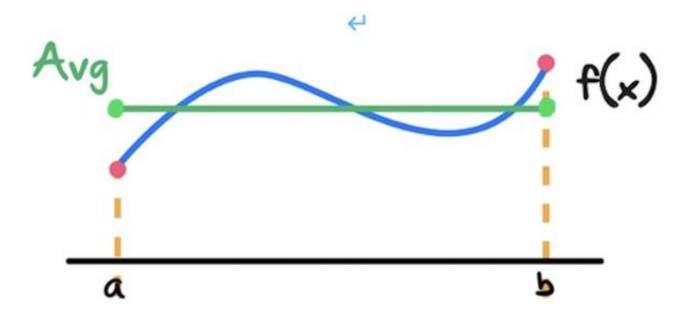
Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Integration Exam Skills [4.4]

Workbook

Outline:

Recap Exam 1	Pg 02-05 Pg 06-14	 Tech-Active Exam Skills Quick Method for Integral Property Questions Finding the Area Bounded Using On Integral Pseudocode for Trapezoidal Approx 	imation
		<u>Exam 2</u>	Pg 24-34



Section A: Recap

[4.3.1] - Find the Average Value of the Function

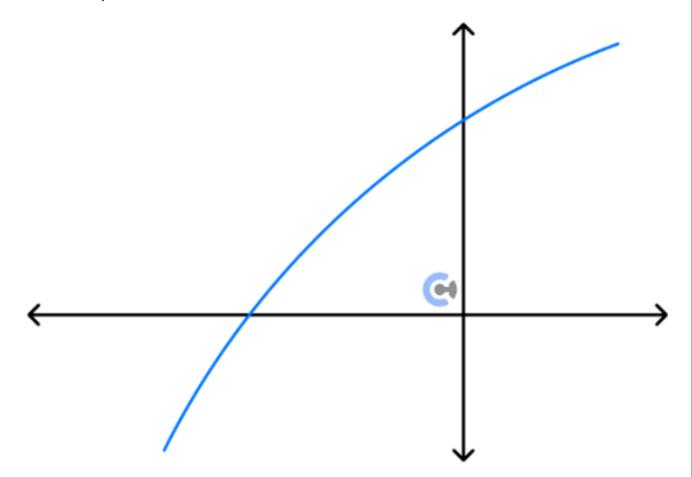
Average Value of a Function

- Average value of the function: Find the average y value of a function from x = a and x = b.
- Average value of the function from x = a to x = b is given by:

Average Value = _____

[4.3.2] - Apply Integration by Recognition

Integration by Recognition

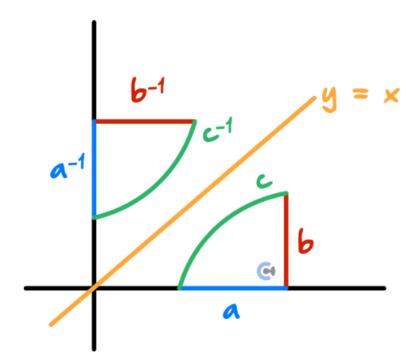

- Integration by Recognition: Finding impossible antiderivatives using prior information.
- Questions follow the structure:
 - a. Find the derivative of ...
 - **b.** Hence, find the integral ...

[4.3.3] - Advanced Areas

Horizontal Strips

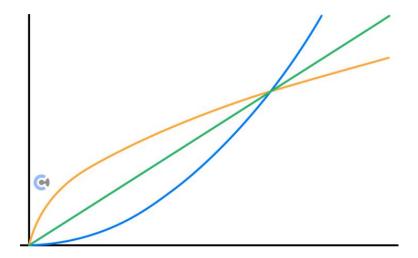
- Horizontal Strip: Cut the area into thin horizontal strips.
- Useful when the function is hard to antiderive but the inverse is easy.

Area of the thin strips = x dy


The area bounded by the function y = f(x), the y-axis and the lines y = a and y = b are:

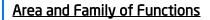
$$Area =$$

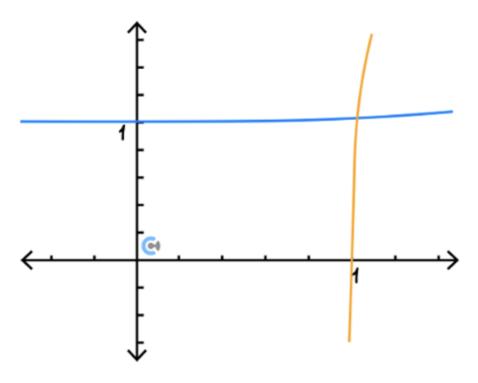
 \bullet The terminals must be y values.


Using Inverse Boundaries

ldea: Reflecting the area around the y = x results in the same area.

Area bounded by a, b, c = Area bounded by _____


Area Between Inverses



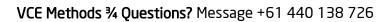
The area between inverses: Can be cut up by the line of symmetry: y = x.

$$\int_a^b f(x) - f^{-1}(x) dx =$$

 $\lim_{k\to l} Area = Area of a simple shape$

> Steps:

- 1. Use Manipulate / Sliders.
- **2.** Identify the "simple shape" that the area approaches to.


Section B: Exam 1 (26 Marks)

Question 1 (4 marks)

a. Let $g: \left(\frac{3}{2}, \infty\right) \to R$, $g(x) = \frac{3}{2x-3}$.

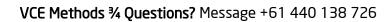
Find the rule for an antiderivative of g(x). (1 mark)

b. Evaluate $\int_0^1 (f(x)(2f(x) - 3)) dx$, where $\int_0^1 [f(x)]^2 dx = \frac{1}{5}$ and $\int_0^1 f(x) dx = \frac{1}{3}$. (3 marks)

	etion 2 (2 marks)	
Find	the average value of $y = x - e^x$ over the interval $x \in [-\ln(2), \ln(2)]$.	
_		-
-		-
_		-
_		-
_		-
-		-
_		-
_		_
_		-
Spac	te for Personal Notes	

VCE Methods ¾ Questions? Message +61 440 138 726

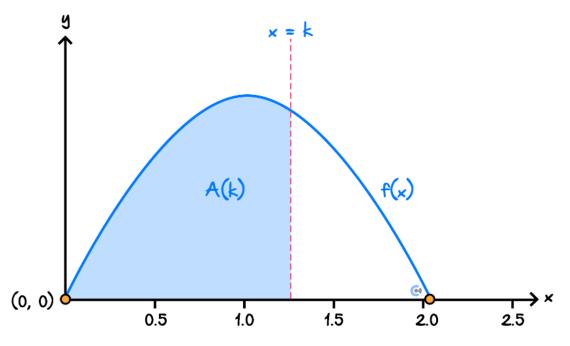
Question 3 (4 marks)


Consider the function, $f(x) = -2x - x^2 + x^3$. **a.** Find the equation of the tangent line of f(x) at x = 1. (1 mark) **b.** Hence, find the area bound by f(x) and the tangent line found in **part a.** (3 marks)

CONTOUREDUCATION	VCE Methods 3/4 Questions? Message +61 440 138 726
Question 4 (4 marks)	
a. Find $\frac{d}{dx}(x\sin(2x))$. (1 mark)	

VCE Methods ¾ Questions? Message +61 440 138 726

b.	Hence, evaluate $\int \left(\frac{1}{2}x\cos(2x)\right)$. (3 marks)
Spa	ace for Personal Notes


$f(x) = \frac{1}{3-2x}$. Find t	he area bounded b	y the graph of y	y = f(x), the y-a	xis and the line y	= 2.

Question 6 (4 marks)
Consider a quadratic function of the form $f(x) = ax^2 + bx + c$, where $a, b, c \in \mathbb{R}$.
The function f has an average value of $\frac{5}{3}$ on the interval $[0, a]$ and a turning point at $(1, 1)$.
Find the values of a,b , and c .

Question 7 (5 marks)

Part of the graph of y = f(x) is shown below. The rule $A(k) = k \sin(k)$ gives the area bounded by the graph of f, the horizontal axis and the line x = k.

a. State the value of $A\left(\frac{\pi}{3}\right)$. (1 mark)

b. Evaluate $f\left(\frac{\pi}{3}\right)$. (2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Consider the average value of the function f over the interval $x \in [0, k]$, where $k \in [0, 2]$.
	Find the value of k that results in the maximum average value. (2 marks)
Sp	ace for Personal Notes

Section C: Tech-Active Exam Skills

Sub-Section: Quick Method for Integral Property Questions

Definition

Ouick Method

We can let f(x) be _____ number which is appropriate for the given integral.

$$f(x) = a, a \in R$$

- Steps
 - **1.** Let f(x) = a and solve for a.
 - **2.** Save f(x) = a that you have solved.
 - **3.** Find the integral the question is asking for.

Question 8 (1 mark) Walkthrough.

If $\int_1^2 f(2x)dx = 6$, then $\int_2^4 2f(x)dx$ is equal to:

- **A.** 6
- **B.** 12
- **C.** 18
- **D.** 24

Question 9 (1 mark)

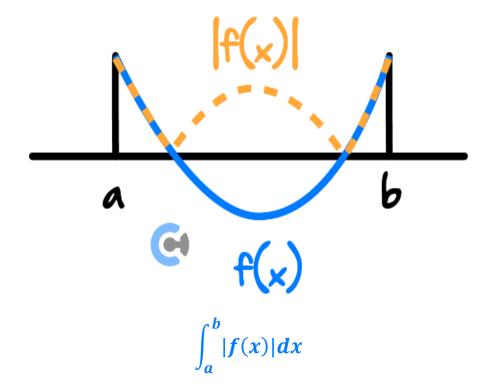
If $\int_0^2 f(x)dx = 10$, then $\int_0^1 2f(2x)dx$ is equal to:

- **A.** 5
- **B.** 10
- **C.** 20
- **D.** −5

Question 10 (1 mark) Extension.

If $\int_{1}^{5} f(3x)dx = 8$, then $\int_{6}^{2} 2f(3x - 3)dx$ is equal to:

- **A.** 16
- **B.** −16
- **C.** 8
- **D.** −8



Sub-Section: Finding the Area Bounded Using One Integral

Using Modulus for Total Areas

Finding area using one integral: Requires modulus.

Calculator Commands: Total Bounded Area

- Mathematica
 - |f(x)| can be written as

Abs [f [x]]

- TI-Nspire
 - Find the modulus sign

Under this button

- Casio Classpad
 - Find the modulus sign under Math1

	Ouestion	11	Tech-Active.
--	-----------------	----	---------------------

Find the **total** area bounded by the function $y = x^3 - 3x^2 - 4x + 12$ and the *x*-axis.

Sub-Section: Pseudocode for Trapezoidal Approximation

REMINDER: VCAA formula for trapezoidal approximation.

Trapezium Rule Approximation

$$\mathsf{Area} \approx \tfrac{x_n - x_0}{2n} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n)]$$

Pseudocode For Trapezoidal Approximation

Type 1: Adding an area of a trapezium in each loop.

Algorithm	<u>Comments</u>
<pre>definef(x) return (enter required function rule) sum ← 0 a ← lowest x-value b ← highest x-value n ← number of trapeziums h ← (b-a)/n left ← a right ← a + h for i from 1 to n strip ← 0.5(f(left) + f(right)) x h sum ← sum + strip left ← left + h right ← right + h end for print sum</pre>	 a and b represent where the area starts and ends. n is the number of trapeziums chosen. In the for loop, the area of each trapezium is calculated as you move from left to right and added to the sum. The final value of the sum is printed. The trapezium algorithm may be implemented by using a function structure. The function f must be defined first. define Trap(a, b, n) (Insert algorithm as shown) return (sum) The advantage of this is that it may be implemented simply by changing the values of the variables.

> Type 2: Adding $f(x_0) + 2f(x_1) + \cdots + 2f(x_{n-1}) + f(x_n)$ first and multiplying $\frac{h}{2}$ at the end.

Trapezium Rule Approximation

Area
$$pprox rac{x_n - x_0}{2n} [f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n)]$$

Inputs: f(x), the function to integrate a, the lower terminal of integration b, the upper terminal

n, the number of trapeziums to use

Define: trapezium (f(x), a, b, n) $h \leftarrow (b - a) \div n$ $x \leftarrow a + h$ $i \leftarrow 1$ **While** i < n **Do** $sum \leftarrow sum + 2 \times f(x)$ $x \leftarrow x + h$ $i \leftarrow i + 1$ **EndWhile** $Area \leftarrow (h \div 2) \times sum$

Return area

Question 12 (1 mark) Walkthrough.

The algorithm below, described in pseudocode, estimates the value of a definite integral using the trapezium rule.

Inputs: f(x), the function to integrate a, the lower terminal of integration b, the upper terminal of integration n, the number of trapeziums to use

Define: trapezium (f(x), a, b, n) $h \leftarrow (b - a) \div n$ $x \leftarrow a + h$ $i \leftarrow 1$ **While** i < n **Do** $sum \leftarrow sum + 2 \times f(x)$ $x \leftarrow x + h$ $i \leftarrow i + 1$ **EndWhile** $Area \leftarrow (h \div 2) \times sum$ **Return** area

Consider the algorithm implemented with the following inputs:

trapezium $(\log_e(x), 1, 7, 3)$

The algorithm returns a value closest to:

- **A.** 6.92
- **B.** 5.93
- **C.** 7.36
- **D.** 7.62

Question 13 (1 mark)

The algorithm below, described in pseudocode, estimates the value of a definite integral using the trapezium rule.

```
Inputs: f(x), the function to integrate a, the lower terminal of integration b, the upper terminal of integration n, the number of trapeziums to use
```

```
define: trapezium (f(x), a, b, n)

sum ← 0

h ← (b - a) \div n

left ← a

right ← a + h

for i from 1 to n

strip ← 0.5(f(left) + f(right)) \times h

sum ← sum + strip

left ← left + h

right ← right+h

end for

print sum
```

Consider the algorithm implemented with the following inputs:

trapezium
$$(2x^2, 1, 7, 3)$$

After the second iteration of the for loop, the value of the *sum* is:

- **A.** 236
- **B.** 88
- **C.** 44
- **D.** 118

Question 14 (1 mark) Extension.

The algorithm below, described in pseudocode, estimates the value of a definite integral using the trapezium rule.

Inputs: f(x), the function to integrate a, the lower terminal of integration b, the upper terminal of integration n, the number of trapeziums to use

Define: trapezium (f(x), a, b, n) $h \leftarrow (b - a) \div n$ $sum \leftarrow f(a) + f(b)$ $x \leftarrow a + h$ $i \leftarrow 1$ **While** i < n **Do** $sum \leftarrow sum + 2 \times f(x)$ $x \leftarrow x + h$ $i \leftarrow i + 1$ **EndWhile** $area \leftarrow (h \div 2) \times sum$ **Return** area

Consider the algorithm implemented with the following inputs:

trapezium
$$(e^x, 1, 11, 5)$$

The value of the sum after the 2^{nd} iteration is equal to:

A.
$$e + 2e^3 + e^{11}$$

B.
$$e + 2e^3 + 2e^5 + e^{11}$$

C.
$$e + 2e^3$$

D.
$$e + 2e^3 + 2e^5$$

Section D: Exam 2 (36 Marks)

Question 15 (1 mark)

Let $f(x) = (2x + 1)^3$. The anti-derivative is given by:

- **A.** $\frac{1}{4}(2x+1)^3 + c$
- **B.** $\frac{1}{8}(2x+1)^4 + c$
- C. $\frac{1}{6}(2x+1)^4 + c$
- **D.** $\frac{1}{4}(2x+1)^4 + c$

Question 16 (1 mark)

Find the average value of $f(x) = \sin(x) - x$ over the interval $x = \frac{\pi}{2}$ to $x = \frac{3\pi}{2}$.

- A. π
- \mathbf{B} . $-\pi$
- C. $\frac{\pi}{2}$
- **D.** $\frac{-\pi}{2}$

Question 17 (1 mark)

The area enclosed between y = (x - 2)(x - 3), and y = (x - 2)(3 - x) is:

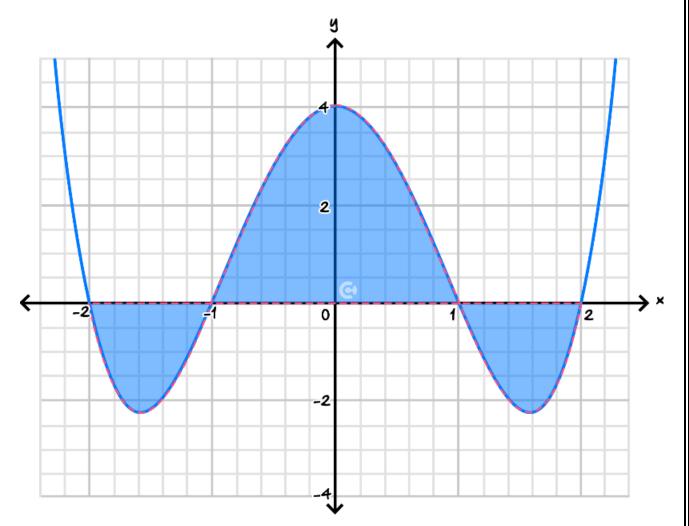
- A. $\frac{1}{12}$
- **B.** $\frac{1}{6}$
- C. $\frac{1}{3}$
- **D.** $\frac{2}{3}$

Question 18 (1 mark)

If $\int_2^4 f(x)dx = 4$, then $\int_2^1 2f(2x)dx$ is equal to:

- **A.** 2
- **B.** −4
- **C.** 8
- **D.** 4

Question 19 (1 mark)


The area bounded by the graph of $y = -x^4 + 20x^2 - 64$ and the x-axis is:

- A. $\frac{1024}{15}$
- **B.** 256
- C. $\frac{1024}{3}$
- **D.** 128

Question 20 (1 mark)

The following depicts the area bounded by the function f(x) = (x-1)(x-2)(x+1)(x+2) and the x-axis.

Which of the following integrals represents the area highlighted above?

$$\mathbf{A.} \ \int_{-2}^2 f(x) dx$$

B.
$$2\int_0^1 f(x)dx - \int_1^2 f(x)dx$$

C.
$$\int_{-1}^{1} f(x)dx + 2 \int_{1}^{2} f(x)dx$$

D.
$$\int_{-1}^{1} f(x) dx - 2 \int_{1}^{2} f(x) dx$$

Question 21 (1 mark)

The algorithm below, described in pseudocode, estimates the value of a definite integral using the trapezium rule.

Inputs: f(x), the function to integrate a, the lower terminal of integration b, the upper terminal of integration n, the number of trapeziums to use

Define: trapezium (f(x), a, b, n) $h \leftarrow (b - a) \div n$ $x \leftarrow a + h$ $i \leftarrow 1$ **While** i < n **Do** $sum \leftarrow sum + 2 \times f(x)$ $x \leftarrow x + h$ $i \leftarrow i + 1$ **EndWhile** $Area \leftarrow (h \div 2) \times sum$ **Return** area

Consider the algorithm implemented with the following inputs:

trapezium
$$(e^{2x}, 0, 8, 4)$$

The value of the sum after the 2^{nd} iteration is equal to:

A.
$$e + 2e^4 + e^{16}$$

B.
$$1 + 2e^4 + 2e^8 + e^{16}$$

C.
$$1 + 2e^4 + 2e^8$$

D.
$$1 + 2e^4 + 2e^8 + 2e^{12} + e^{16}$$

Question 22 (1 mark)

If $\frac{d}{dx}(x\cos(x)) = \cos(x) - x\sin(x)$, then $\int x\sin(x)dx$ is equal to:

A.
$$-\sin(x) + x\cos(x)$$

B.
$$\sin(x) - \int x \cos(x) dx$$

C.
$$\int \cos(x) dx - x \cos(x)$$

D.
$$\int \cos(x) dx + x \cos(x)$$

Question 23 (1 mark)

Which of the following integrals gives the area bound between $f(x) = -x^3$ and its inverse?

- **A.** $\int_{-1}^{1} f(x) x \, dx$
- **B.** $2\int_{-1}^{0} f(x) f^{-1}(x) dx$
- C. $2\int_0^1 f(x) f^{-1}(x) dx$
- **D.** $2\int_0^1 f(x) + f^{-1}(x) dx$

Question 24 (1 mark)

It is known that g(x) is an odd function, whilst f(x) is an even function. Then, the integral $\int_{-a}^{a} g(x) - f(x) dx$ simplifies to:

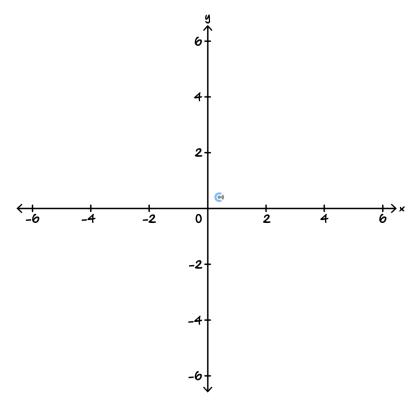
- A. $\int_{-a}^{a} f(x) dx$
- **B.** $\int_{a}^{-a} f(x) dx$
- C. $\int_{-a}^{a} g(x) dx$
- **D.** $\int_a^{-a} g(x) dx$

Question 25 (1 mark)

Consider the function $h(x) = \frac{1}{-k(x+2)} + 1$, where k > 0. Let A(k) be the area between h(x) and the axes. The value of $\lim_{k \to \infty} A(k)$ is given by:

- A. k^2
- **B.** 2*k*
- **C.** 2
- **D.** 10*k*

Question 26 (1 mark)


An estimate of the area under the curve $y = \sqrt{x}$ using the trapezoidal method, from the interval x = 0 to x = 4, with a step size of 1 is equal to:

- **A.** $\sqrt{2} + \sqrt{3}$
- **B.** $1 + \sqrt{2} + \sqrt{3}$
- C. $2 + \sqrt{2} + \sqrt{3}$
- **D.** $4 + 2\sqrt{2} + 2\sqrt{3}$

Space 1	for Pei	rsonal l	Votes
---------	---------	----------	-------

Question 27 (14 marks)

Let
$$f(x) = \frac{4x}{2x+1}$$
.

a. Express f(x) in the form $\frac{a}{bx+c} + d$. (1 mark)

b. Find the equation of the asymptotes of f(x). (1 mark)

							-	
							-	
Hen	as find the minim	um distance	from the nor	tion of the ora	sh that lies o	n the right-hai	nd eide and the	a left
	ce, find the minim d side of the vertic			tion of the gra	ph that lies o	n the right-ha	nd side and th	e lef
				tion of the gra	ph that lies o	n the right-ha	nd side and th	e lef
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	e lef
				tion of the gra	ph that lies o	n the right-ha	nd side and th	
				tion of the gra	ph that lies o	n the right-ha	nd side and th	

e. Now, consider the function:

$$f: [a, b] \to R, f_k(x) = \frac{2kx}{kx+1}, k > 0.5$$

i. a and b are the intersection points between $f_k(x)$ and x. Provide your answer in terms of k. (2 marks)

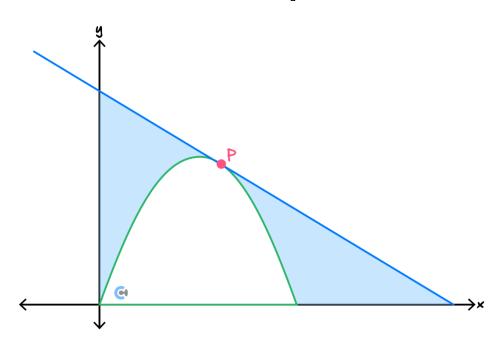
ii. Let A(k) be the area between $f_k(x)$ and x. State A(k). (3 marks)

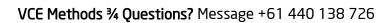
iii. Find the range of A(k). (2 marks)

Question 28 (10 marks)

Let
$$f: [0,3] \to \mathbb{R}, f(x) = 3x - x^2$$
.

a. A rectangle is to be fitted in the region bounded by y = f(x) and the x-axis.


Let x = a where $\frac{3}{2} < a < 3$, be the x-coordinate of one of the vertices of the rectangle on the curve.


i. Find the area of the rectangle in terms of a. (2 marks)

ii. State the area of the largest rectangle and the value of a when it occurs. (2 marks)

b. Let $P(b, 3b - b^2)$ be a point on the curve y = f(x), where $\frac{3}{2} < b < 3$.

i.	Find the x and y -intercepts of the tangent in terms of b . (1 mark)
ii.	Find the shaded area, on the diagram above, in terms of b . (2 marks)
v.	Find the value of <i>b</i> for which the shaded area is minimum and state this minimum area. (2 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

