

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

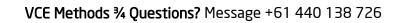
VCE Mathematical Methods ¾ Integration Exam Skills [4.4]

Homework

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2- Pg 19
Supplementary Questions	Pg 20 - Pg 37

Section A: Compulsory Questions


Sub-Section: Exam 1 (Tech-Free)

Question 1

a.	Find an anti-derivative of $3x^4 - \frac{2}{x^2}$ with respect to x.

b.	Find ∫	(4 –	$(2x)^{-5}$	dx.
----	--------	------	-------------	-----

c.	The function with rule $g(x)$ has derivative $g'(x) = \sin(2\pi x)$. Given that $g(1) = \frac{1}{\pi}$, find $g(x)$.
	·

Que	stion 2
	gradient of a curve is given by $2\sin(2x) - 4e^{-2x}$. The curve passes through the origin. What is the equation be curve?
-	
-	
Que	stion 3
a.]	Find the derivative of $x \sin(x)$.
-	
b. 1	Hence, find an antiderivative of $x \cos(x)$.
-	
-	
	· ·
Spa	ce for Personal Notes

Find the average value of $y = -x^2 + 8x + 12$ over the interval [1, 4].

Question 5

Find $3\int_0^{3k} \left(g\left(\frac{x}{3}\right) - 1\right) dx$, given $\int_0^k (g(x)) dx = 3k$, where function g is continuous for $x \in R$ and given $g(x) \ge 0$ for $x \in [0, k]$.

Let $g: R \to R$, $g(x) = (a - x)^2$, where a is a real constant.

The average value of α on the interval [-1,1] is $\frac{31}{12}$. Find the value(s) of α .

Question 7

If $y = \frac{\tan(x)}{4}$, find $\frac{dy}{dt}$, given $\frac{dx}{dt} = \frac{2}{\sqrt{t}}$ and x = 4 when t = 1.

Sub-Section: Exam 2 (Tech-Active)

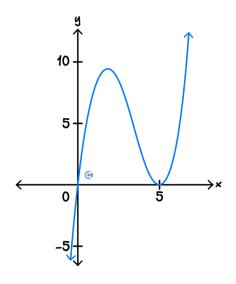
Question 8

If $\int ae^{bx}dx = -2e^{2x} + c$, then:

- **A.** a = 4 and b = -2.
- **B.** a = -2 and b = 2.
- **C.** a = -1 and b = 2.
- **D.** a = -4 and b = 2.

Question 9

The gradient of a curve is given by $2\cos\left(\frac{x}{2}\right)$. If the x-intercept is $x = \frac{5\pi}{3}$ then, the y-intercept will be at $y = \frac{5\pi}{3}$


- A. $-\frac{1}{2}$
- **B.** $\frac{1}{2}$
- **C.** -2
- **D.** $\frac{\sqrt{3}}{2}$

Let $f(x) = px^r$ and $g(x) = qx^s$, where a, b, m and n are positive integers. The domain of f = domain of g = R. If f'(x) is an anti-derivative of g(x), then which one of the following must be true?

- A. $\frac{r}{s}$ is an integer.
- **B.** $\frac{s}{r}$ is an integer.
- C. $\frac{p}{a}$ is an integer.
- **D.** $\frac{q}{p}$ is an integer.

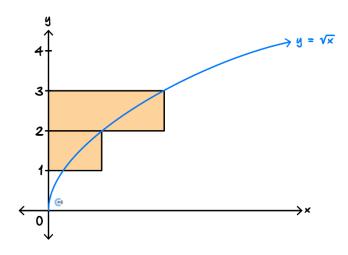
Question 11

The graph of y = f'(x) is shown above. Which of the following statements is true for the graph of y = f(x)?

- A. The graph has a local maximum at x = 0 and a stationary point of inflection at x = 5.
- **B.** The graph has a local minimum at x = 0 and a stationary point of inflection at x = 5.
- C. The graph has a local maximum at x = 5 and a stationary point of inflection at x = 0.
- **D.** The graph has a local minimum at x = 5 and a stationary point of inflection at x = 0.

If $\int_{2}^{6} f(x)dx = 8$, then $\int_{0}^{2} f(2x+2)dx$ is equal to:

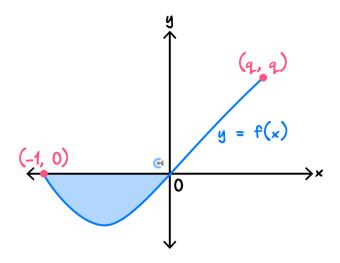
- **A.** 4
- **B.** 6
- **C.** 8
- **D.** 10


Question 13

If $\int_0^3 g(x)dx = 18$ and $\int_0^3 (2g(x) + ax)dx = 72$, then the value of a is:

- **A.** 2
- **B.** 4
- **C.** 6
- **D.** 8

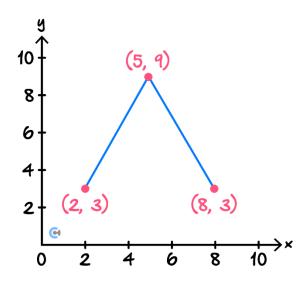
Lily and Max are calculating the area between the graph of $y = \sqrt{x}$ and the y-axis between y = 1 and y = 3. Jake uses a partitioning, shown in the diagram below, while Anita uses a definite integral to find the exact area.



The difference between the results obtained by Jake and Anita is:

- **A.** 0
- **B.** $\frac{22}{3}$
- C. $\frac{26}{3}$
- **D.** $\frac{11}{3}$

The graph of a function $f: [-1, q] \rightarrow R$ is shown below.


The average value of f over the interval [-1,q] is zero. The area of the shaded region is $\frac{9}{2}$.

If the graph is a straight line, for $0 \le x \le q$, then the value of q is:

- **A.** 2
- **B.** 5
- C. $\frac{5}{2}$
- **D.** 3

The graph of a function, h, is shown below.

The average value of h is:

- **A.** 3
- **B.** 5
- **C.** 6
- **D.** 7

The algorithm below, described in pseudocode, estimates the value of a definite integral using the trapezium rule.

Inputs:

- f(x), the function to integrate.
- \bullet a, the lower terminal of integration.
- **6** *b*, the upper terminal of integration.
- \bullet *n*, the number of trapeziums to use.

```
Define trapezium (f(x), a, b, n)

h \leftarrow (b - a) \div n

sum \leftarrow f(a) + f(b)

x \leftarrow a + h

i \leftarrow 1

While i < n Do

sum \leftarrow sum + 2 \times f(x)

x \leftarrow x + h

i \leftarrow i + 1

EndWhile

area \leftarrow (h \div 2) \times sum

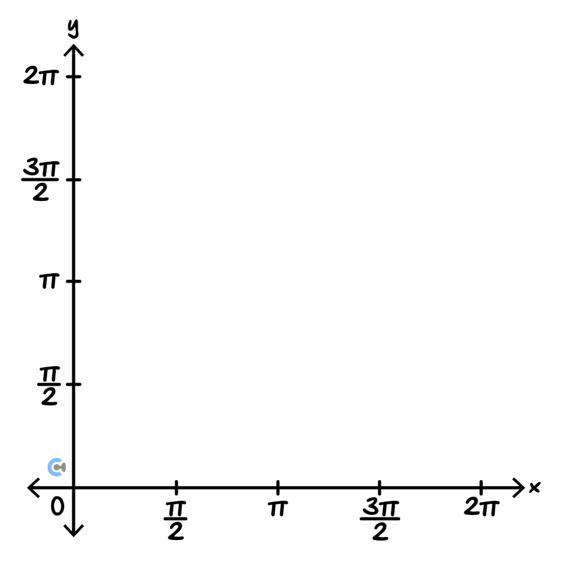
Return area
```

Consider the algorithm implemented with the following inputs:

What is the value of sum **after the 3rd iteration** of the loop?

A.
$$2 \ln(1) + 2 \ln(2) + 2 \ln(3) + 2 \ln(4) + 2 \ln(5)$$

B.
$$\ln(1) + 2\ln(2) + 2\ln(3) + \ln(5)$$


C.
$$2 \ln(2) + 2 \ln(3) + 2 \ln(4) + \ln(5)$$

D.
$$2 \ln(2) + 2 \ln(3) + 2 \ln(4)$$

A data science researcher is studying a nonlinear transformation model described by the function: $f(x) = x + \sin(x), x \in [0, 2\pi].$

a. Sketch the function $f(x) = x + \sin(x)$ over the interval $[0, 2\pi]$. Label the endpoints clearly.

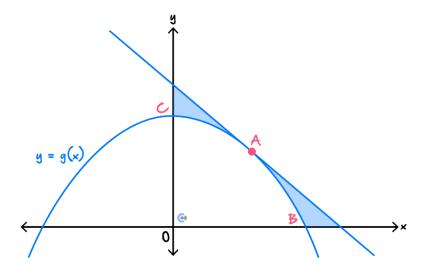
b. Given that f(x) is strictly increasing on $[0, 2\pi]$, and thus invertible, **state the domain of** $f^{-1}(x)$.

c. Sketch $f^{-1}(x)$ on the same axis and identify the coordinates of any intersections between the graphs of f(x) and $f^{-1}(x)$.

d. Find the area between f(x) and $f^{-1}(x)$ on their domain of overlap.

e. Calculate the area under the curve $f^{-1}(x)$ from x = 0 to x = 4, bounded by the *x*-axis. Round your answer to **2 decimal places**.

f. Verify that the point $A\left(\frac{5\pi}{6} + \frac{1}{2}, \frac{5\pi}{6}\right)$ lies on the graph of $f^{-1}(x)$.



VCE Methods ¾ Questions? Message +61 440 138 726

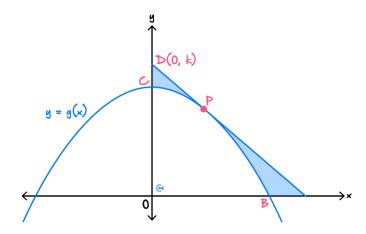
Ţ.	Find the area bounded by the tangent to $f^{-1}(x)$ at point A and the curve $f^{-1}(x)$. Give your answer correct to 2 decimal places.
P	ace for Personal Notes

Part of the graph of a function $R \to R$, $g(x) = 12 - 2x^2$ is shown below.

a. Points B and C are the positive x-intercept and y-intercept of the graph of g, respectively, as shown in the diagram above. The tangent to the graph of g at the point A is parallel to the line segment BC.

i. Find the equation of the line perpendicular to the graph of g at the point A.

ii. Find the average rate of change of f(x) between x = 0 and the x-coordinate of point A.



VCE Methods ¾ Questions? Message +61 440 138 726

111.	The shaded region shown in the diagram above is bounded by the graph of g , the tangent at the point A and the x -axis and y -axis.
	Calculate the area of this shaded region.

b. The tangent to the graph of g at a point p has a negative gradient and intersects the y-axis at point D(0, k), where $14 \le k \le 20$.

i. Find the equation of the tangent line at point p in terms of k.

ii. Find the rule A(k) for the function of k that gives the area of the shaded region.

	_		

VCE Methods ¾ Questions? Message +61 440 138 726

iii.	Find the maximum area of the shaded region and the value of <i>k</i> for which this occurs, give to 2 decimal places.
iv.	If $12 \le k \le 24$, find the minimum area of the shaded region and the value of k for which this occurs, give to 2 decimal places.
Space	for Personal Notes

Section B: Supplementary Questions

Sub-Section: Exam 1 (Tech-Free)

Question 20

a. Evaluate $\int_{1}^{5} \left(\frac{1}{\sqrt{x}}\right) dx$.

b. If $f'(x) = 2\cos(x) - \sin(2x)$ and $f\left(\frac{\pi}{2}\right) = \frac{1}{2}$, find f(x).

a. Find $\int_1^2 3x^2 - 4x + \frac{5}{x} + \sin(x)$.

b. If $f(x) = x \log_e(x)$,

i. Find f'(x).

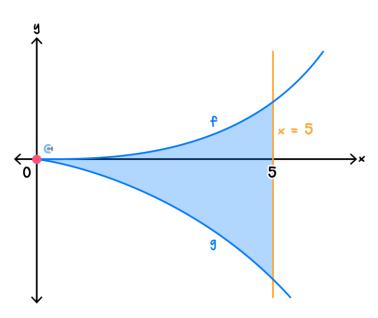
ii. Hence, find $\int \log_e(x) dx$.

Let f be a differentiable function defined for all real x, where $f(x) \ge 0$ for all $x \in [0, a]$.

If $\int_0^a f(x)dx = a$, find $2\int_0^{7a} \left(f\left(\frac{x}{7}\right) + 2\right)dx$.

Question 23

Find the value(s) of k for which the average value of $y = \sin(kx)$ over the interval $[0, \pi]$ is equal to the average value of $y = \cos(x)$ over the same interval.



Let $f: R \to R$, $f(x) = x^2 e^{-kx}$, where k is a negative real constant.

a. Show that $f'(x) = xe^{-kx}(-kx + 2)$.

b. Find the value(s) of k for which the graphs of y = f(x) and y = f'(x) have exactly one point of intersection.

Let $g(x) = \frac{2xe^{-kx}}{k}$. The diagram below shows sections of the graphs of f and g for $x \ge 0$.

Let A be the area of the region bounded by the curves y = f(x), y = g(x) and the line x = 5.

c. Write down a definite integral that gives the value of **A**.

VCE Methods 3/4 Questions? Message +61 440 138 726

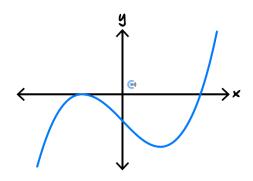
d.	Using your result from part a. , or otherwise, find the value of k such that $A = \frac{10}{-k}$.			

Space for Personal Notes				

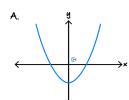
If $f(x) = \int_0^x (\sqrt{t^2 + 4}) dt$, then f'(-2) is equal to:

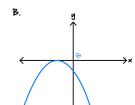
- A. $\sqrt{2}$
- **B.** $-\sqrt{2}$
- **C.** $2\sqrt{2}$
- **D.** $-2\sqrt{2}$

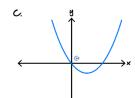
Question 26

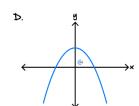

Which one of the following options is an anti-derivative of $\frac{1}{x^2} - \frac{1}{\cos^2(\frac{x}{2})}$?

- $\mathbf{A.} \quad -\frac{1}{x} 2\tan\left(\frac{x}{2}\right)$
- **B.** $-\frac{2}{x^3} \frac{(2)}{\cos^3(\frac{x}{2})}$
- $\mathbf{C.} \ \frac{1}{x} \frac{1}{2} \tan \left(\frac{x}{2} \right)$
- **D.** $\log_e(x^2) \tan\left(\frac{x}{2}\right)$

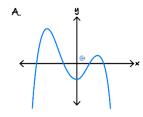

The following information applies to the two questions that follow.

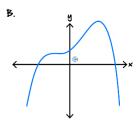

For Questions 27 and 28, refer to the graph of y = f(x) shown below.

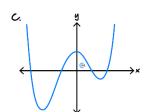


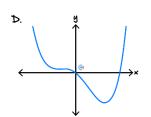

Question 27

The corresponding part of the derivative graph of y = f(x) is best represented by:

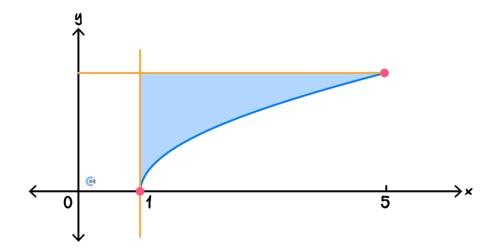







Question 28

The corresponding part of the antiderivative graph of y = f(x) is best represented by:



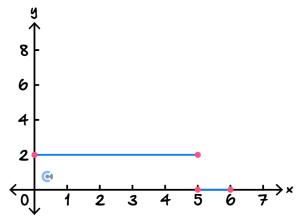
Given that $\int_1^5 (f(x))dx = 4$, $\int_5^1 (f(x) - 2)dx$ is equal to:

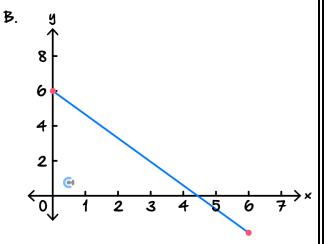
- **A.** 0
- **B.** 1
- **C.** 4
- **D.** 7

Question 30

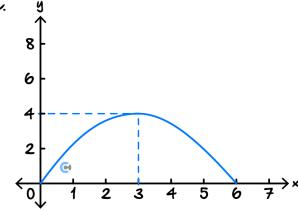
The graph of $g: [1, 5] \rightarrow R, g(x) = 2\sqrt{x-1}$ is shown below.

Which one of the following definite integrals could be used to find the area of the shaded region?

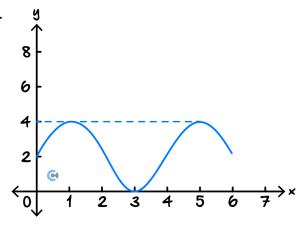

- A. $\int_{1}^{5} (2\sqrt{x-1}) dx$
- $\mathbf{B.} \quad \int_0^4 \left(\frac{x^2}{4}\right) dx$
- C. $\int_0^4 (4 2\sqrt{x 1}) dx$
- $\mathbf{D.} \ \int_0^4 \left(\frac{x^2}{4} + 1\right) dx$

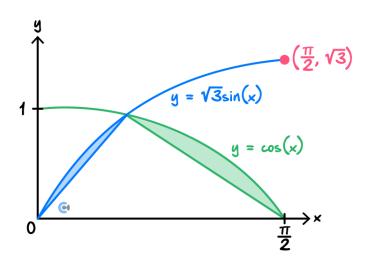


Let g be a function with an average value of 2 over the interval [0, 6].


The graph of g over this interval could be:

A.




C.

D.

The area of the shaded region would be:

- **A.** $\sqrt{3} 1 \frac{\sqrt{3}\pi}{8}$
- **B.** $\sqrt{3} 1 \frac{\sqrt{3}\pi}{4}$
- C. $\frac{\sqrt{3}\pi}{8}$
- **D.** $\frac{\pi}{2}(\sqrt{3}-1)$
- **E.** $\frac{3\pi}{8} \sqrt{3}$

Question 33

The temperature T° over a time period of a day is given by the function $T(t) = 17 - 6\sin\left(\frac{\pi t}{12}\right)$, where t is the time in hours. Using the given function, the average temperature over the first 12 hours is equal to:

- **A.** 17
- **B.** $204 \frac{12}{\pi}$
- C. $17 + \frac{12}{\pi}$
- **D.** $17 \frac{12}{\pi}$
- $\mathbf{E.} \ \ \frac{12}{\pi}$

The following pseudocode is intended to estimate the value of a definite integral using the trapezium rule. However, one line in the loop is missing.

Inputs:

- f(x), the function to integrate.
- \mathbf{e} a, the lower terminal of integration.
- **6** b, the upper terminal of integration.
- \bullet *n*, the number of trapeziums to use.

Define trapezium (f(x), a, b, n)

$$h \leftarrow (b - a) \div n$$

$$sum \leftarrow f(a) + f(b)$$

$$x \leftarrow a + b$$

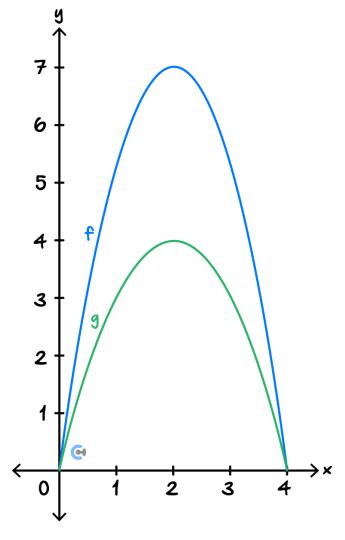
$$x \leftarrow a + h$$

 $i \leftarrow 1$

While i < n Do

$$\begin{array}{l}
----- \\
x \leftarrow x + h \\
i \leftarrow i + 1
\end{array}$$

EndWhile

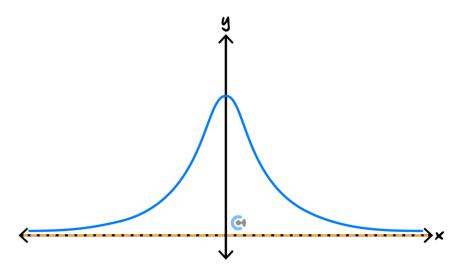

$$area \leftarrow (h \div 2) \times sum$$

Return area

- **A.** $sum \leftarrow f(x) + 2$
- **B.** $sum \leftarrow sum + f(x)$
- C. $sum \leftarrow sum + 2 \times f(x)$
- **D.** $sum \leftarrow sum \times 2 \times f(x)$

Assume that $f(x) = \frac{7x}{4}(4 - x)$ and $g(x) = 4x - x^2$, $0 \le x \le 4$.

a. Find the angle between the tangents drawn to f and g when x = 0, in degrees, correct to 2 decimal places.


VCE Methods ¾ Questions? Message +61 440 138 726

b. Find the average value of the function $y = f(x) - g(x)$ on the interval [0, 4].					
c.	Let $(k, g(k))$ be a random point on graph of g , find the value of area bounded by the tangent of $g(x)$ at $x = k$, $g(x)$, and $f(x)$.				
					
d.	Find the value of k such that the bounded area is minimum, and state the minimum value.				
Space for Personal Notes					

CONTOUREDUCATION

Question 36

An engineer is exploring the safety of the jumps that have been built along the track. A typical jump follows the rule $h(x) = \frac{1}{x^2+1}$ as shown in the diagram.

a. Find an approximation, for the area under the curve from x = -3 to x = 3 using intervals of width one unit and right endpoint rectangles.

b. Find the exact area under h(x) from x = -3 to x = 3.

c. Hence, show your working to find $\int_{-1}^{1} h(3x)dx - \frac{\pi}{6}$.

Let $g: [a, \infty] \to R$, $g(x) = \frac{1}{x^2 + 1}$ where a is the least possible value such that the inverse function $g^{-1}(x)$ exists.

- **d.** State the value of a.
- **e.** Find the integral(s) required to find the area defined by the regions bounded by the graphs of g(x), $g^{-1}(x)$ and the lines $x = \frac{7}{10}$ and x = 2. You do not need to evaluate the integrals.

The graph of g undergoes the listed transformations below to become the graph of p:

- \bigcirc Dilated by a factor of 3 from *x*-axis.
- \bigcirc Dilated by a factor of $\frac{1}{2}$ from y-axis.
- Reflected in the y-axis.
- **f.** Find the rule for p^{-1} and state the domain.

VCE Methods ¾ Questions? Message +61 440 138 726

g.	Find the average value of p^{-1} in the interval [1, 2], correct to 2 decimal places.			
h.	The area between $y = kp^{-1}(x)$, the lines $x = 1$, $x = 2$ and the x-axis is found to be at least 6 square units. Find the possible values of k correct to 1 decimal place.			
Space for Personal Notes				

Let $g:[0,\infty) \to R, g(x) = \frac{3}{4x^2+1}$.

a. Using the fact that $g(g^{-1}(x)) = x$ or otherwise, find the rule for g^{-1} and its domain.

b. Find the area bounded between g(x) and $g^{-1}(x)$, correct to 2 decimal places.

c. Find the value of a so that $\int_0^{0.5} g(x) dx = 1.5 - \int_a^3 0.5 - g^{-1}(x) dx$.

Now, consider $f: [0, \infty) \to R, f(x) = \frac{3}{kx^2 + 1}, k > 0.$

d. State possible number of intersection points between f(x) and $f^{-1}(x)$.

VCE Methods ¾ Questions? Message +61 440 138 726

e. Consider the set of k that there is only one intersection point between $f(x)$ and $f^{-1}(x)$, find the largest possible area that is bounded by $f(x)$, $f^{-1}(x)$, x -axis and y -axis in terms of k .					
Space for Personal Notes					

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

