

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Integration II [4.3]

Workbook

Outline:

Pg 8-13

Introduction Pg 2-7

Average Value of the Function

- Average Value of the Function
- Visualising Average Value of the Function

Integration by Recognition

Pg 14-17

- Introduction to Integration by Recognition
- Integration by Recognition

Advanced Area

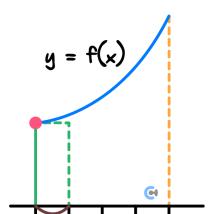
Pg 18-26

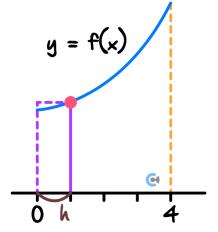
- Horizontal Strips
- Inverse Boundaries
- Area Between Inverses
- Area and Family of Functions

Section A: Introduction

Let's quickly review last week's material.

Learning Objective: [4.2.1] - Approximate areas under the function

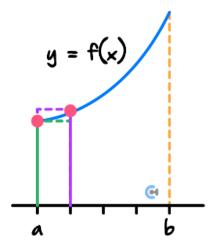


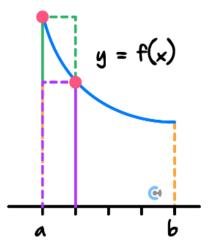


- Riemann Sum: Approximates the area under a curve using rectangles.
- \blacktriangleright Height of the rectangles: Determined by either the left or right y value of the function.
- > Step size (h): Thickness of the rectangle.

$$h=rac{b-a}{n}$$
 where $n=$ _______

Overestimation and Underestimation of Riemann Sum

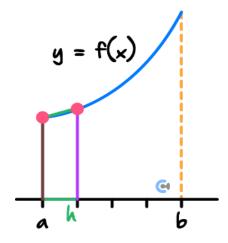




- Left endpoint approximation:
 - Increasing function: _____
 - Decreasing function: ______
- Right endpoint approximation:

 - Decreasing function: ______

Trapezoidal Approximation



- Trapezoidal Approximations: Approximates the area under a curve using trapeziums.
- Formula for each trapezium: Approximates the area under a curve using trapeziums.

$$Area = \frac{h}{2} (f(a) + f(a+h))$$

Step size (h): Thickness of the trapezium.

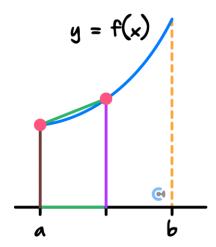
$$h = \frac{b-a}{n}$$
 where $n = number$ of rectangles

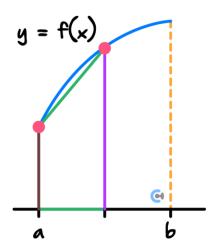
Formula: Sum of all the trapeziums

Approximation =
$$\frac{b-a}{2n}(f(a)+2f(a+h)+2f(a+2h)\cdots+f(b))$$

$$VCAA\ Version = \frac{x_n - x_0}{2n}(f(x_0) + 2f(x_1) + 2f(x_2) \cdots + f(x_n))$$

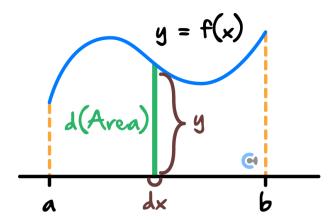
Overestimation and Underestimation of Trapezoidal Approximation





- > Trapezoidal approximation:
 - G Concave Up: ______
 - G Concave Down: _____

Learning Objective: [4.2.2] - Find signed and total areas



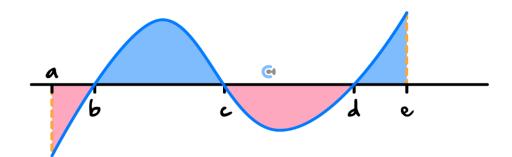
The area under the curve y = f(x) from x = a to x = b is given by:

Signed Area

Signed Area =
$$\int_{a}^{b} y \, dx$$

- **Signed Area**: Areas with signs due to the sign of the *y*-value of the function.
- Positive Signed Area: _____
- Negative Signed Area: _____
- Positive and negative areas will cancel out.

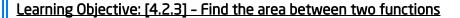
Total Area

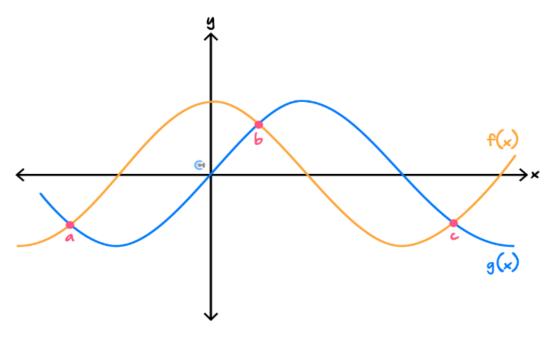


- Total Area: Total ______ area.
- Require ______ integrals for areas with ______ y-value.

Total Area =
$$-\int_a^b y dx + \int_b^c y dx - \int_c^d y dx + \int_d^e y dx$$

- > Steps:
 - 1. ______ the integrals for ______ and ______ *y*-values.
 - 2. Turn the negative signed areas to positive by putting a ______ in front!





Area between two functions:

Integrand (inside the integral) is the _____ function minus the _____ function.

What are we learning today?

Context: Integration I Learning Objective

► [4.3.1] - Find Average Value of the Function.

We will learn how to find an average y value of a function.

► [4.3.2] - Apply Integration by Recognition.

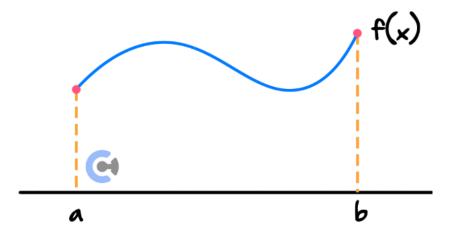
Learn how to integrate something impossible (usually).

[4.3.3] - Advanced Areas

Trickier integration problems where we use inverse function properties.

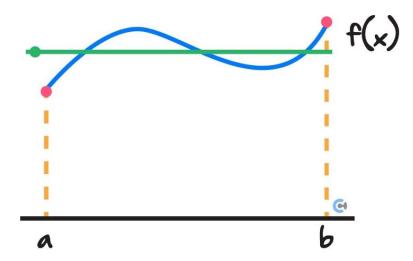
Section B: Average Value of the Function

Context: Average Value of the Function



- The value of the function represents the ______ of the graph.
- ▶ Hence, the average value of the function is the average height of the function.

Average Value of the Function = Average height of the function

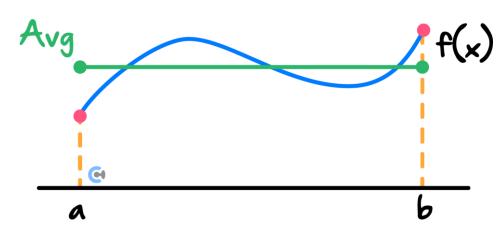


How can we find the average height of the function?

Sub-Section: Average Value of the Function

Exploration: Average Value of the Function

Consider the graph below.



Visualise the average value of the function above.

Find the area under a function from x = a to x = b.

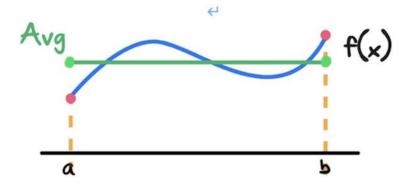
Find the area under the average value.

• What do you notice about the two areas above?

Hence, what is the average value of f(x) from x = a to x = b?

$$Avg =$$

Average Value of a Function



- **Average value of the function**: Find the average y value of a function from x = a and x = b.
- \blacktriangleright Average value of the function from x=a to x=b is given by:

Average Value =
$$\frac{1}{b-a} \int_a^b f(x) dx$$

<u>Discussion:</u> How many integrals are we using? Hence, is the average value the signed area divided by the width, or the total area divided by the width?

Question 1 Walkthrough.

Find the average value of $f(x) = \frac{\cos(x)}{3}$ on the interval $\left[0, \frac{\pi}{2}\right]$.

w

TIP: Checking your average value.

- You can quickly check your answer by checking if it's between the minimum y value and maximum y value.
- Average MUST ALWAYS be in between.

Question 2

Find the average value of $f(x) = x^2 + 4$ on the interval [0, 5].

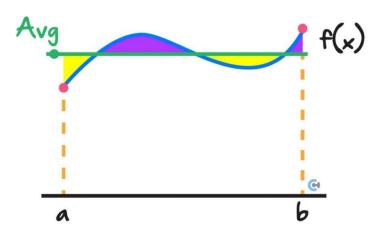
Question 3

Find the average value of $f(x) = \frac{1}{x} + 1$ on the interval [2, 4].

Sub-Section: Visualising Average Value of the Function

<u>Discussion:</u> What should the area above the average value and the area under the average value be?

Visualisation of Average Value

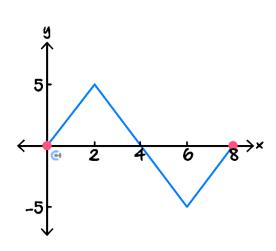


Area Above = Area Below the Avg Value

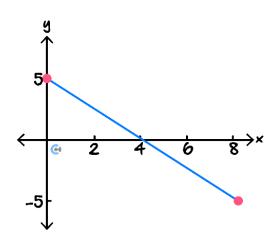
Question 4 (1 mark)

Which one of the following functions has an average value of 5 over the interval [0,8]?

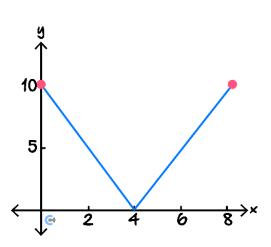
A.



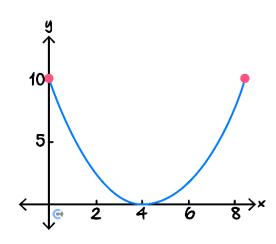
₿.



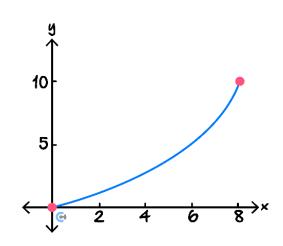
C.



D.



E.



Section C: Integration by Recognition

Sub-Section: Introduction to Integration by Recognition

Context: Limitation of MM Integration

Consider the following integrals,

$$\int x \sin(x) dx$$
, $\int \log_e(x) dx$

What do they have in common?

- As we can see, MM34 have some integrals we cannot find.
- What can we do instead for the above integrals?

Sub-Section: Integration by Recognition

Let's take a look at an example of integration by recognition.

Question 5 Walkthrough.

a. Find $\frac{d}{dx}(x\log_e(x))$.

b. Hence, how can we find $\int \log_e(x) dx$?

<u>Discussion:</u> What is the purpose of integration by recognition?

Integration by Recognition

- Integration by Recognition: Finding impossible antiderivatives using prior information.
- Questions follow the structure:
 - a) Find the derivative of ...
 - b) Hence, find the integral ...

Question 6

a. Find f'(x) where $f(x) = 4x \log_e(2x)$.

b. Hence, find $\int \log_e(2x) dx$.

Question 7

a. Find $\frac{d}{dx}(xe^{3x})$.

b. Hence, find $\int xe^{3x} dx$.

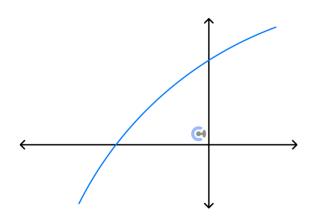
Section D: Advanced Area

Sub-Section: Horizontal Strips

<u>Discussion:</u> We have been solving for areas using vertical strips (y dx). Is it possible to find areas using horizontal strips instead?

Exploration: Horizontal Strips

Consider the area bounded by the graph below and its axes intercepts.



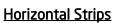
Cut the area into thin horizontal strips and define the area.

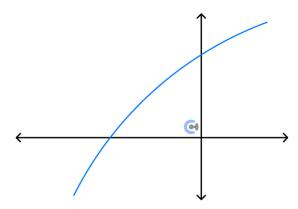
Area of the thin strips = _____

Hence, define the integral that will help evaluate the area using horizontal strips.

Area = _____

ightharpoonup The terminals must be your y values.





- **Horizontal Strip:** Cut the area into thin horizontal strips.
- Useful when the function is hard to antiderive but the inverse is easy.

EG: $\log_e(x)$

Area of the thin strips = x dy

$$Area = \int_{a}^{b} x \, dy$$

 \bullet The terminals must be y values.

Question 8 Walkthrough.

Let $f(x) = \log_e(x)$. Find the area bounded by the graph of y = f(x), the y-axis, the x-axis, and the line y = 2.

_	_	_
()11	estion	9

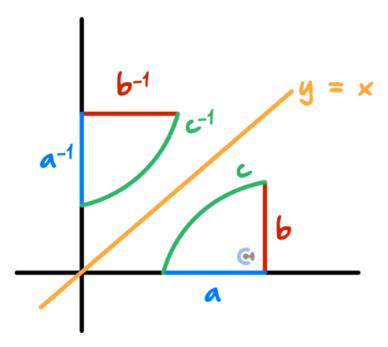
Let $f(x) = \log_e(2x)$. Find the area bounded by the graph of y = f(x), the y-axis, the x-axis, and the line y = 3.

Sub-Section: Inverse Boundaries

<u>Discussion:</u> What would happen to the size of the area if you reflect the area around y = x?

<u>Discussion:</u> Hence, area bounded by a, b, c will be the same as area bounded by which boundaries?

Using Inverse Boundaries



Idea: Reflecting the area around the y = x results in the same area.

Area bounded by a, b, c =Area bounded by a^{-1}, b^{-1}, c^{-1}

Question 10 Walkthrough. Tech-Active.

Let
$$f: [3, \infty) \to f(x) = x^3 - 3x^2 - 9x + 5$$
.

Find the area bounded by $y = f^{-1}(x)$, y = 6, y = 8 and the y-axis.

NOTE: Inverse function is impossible to find here!

Question 11 Tech-Active.

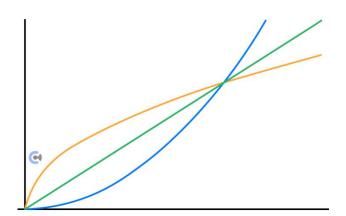
Let
$$g:[2,\infty) \to g(x) = x^3 + 4x^2 - 5x + 10$$
.

Find the area bounded by $y = g^{-1}(x)$, y = 5, y = 8 and the y-axis.

Sub-Section: Area Between Inverses

<u>Discussion:</u> Given that inverses are symmetrical around y = x, how can we find the area between two inverses?

Area Between Inverses



Area between inverses: Can be cut up by the line of symmetry: y = x.

$$\int_{a}^{b} f(x) - f^{-1}(x) dx = 2 \int_{a}^{b} f(x) - x dx = 2 \int_{a}^{b} x - f^{-1}(x) dx$$

Question 12 Walkthrough. Tech-Active.

Let
$$f(x) = \log_e(3x) + 10$$
.

Find the area bounded by y = f(x) and $y = f^{-1}(x)$. Give your answer correct to two decimal places.

Question 13 (2 marks) Tech-Active.

Let
$$f(x) = e^x - 2$$
.

Find the area bounded by y = f(x) and $y = f^{-1}(x)$. Give your answer correct to two decimal places.

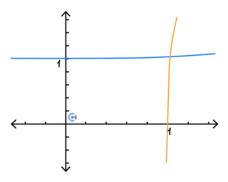
Sub-Section: Area and Family of Functions

Question 14 Walkthrough.

Let $f(x) = e^{2(x-k)} + 2$. The area bounded by f, f^{-1} and the coordinate axes in the first quadrant is A(k).

Find $\lim_{k\to\infty} A(k)$.

Area and Family of Functions



 $\lim_{k\to l} Area = Area of a simple shape$

- > Steps:
 - 1. Use Manipulate / Sliders.
 - **2.** Identify the "simple shape" that the area approaches to.

NOTE: This was in the VCAA exam a lot!

Question 15

Let $g(x) = e^{3(x-k)} + 4$. The area bounded by g, g^{-1} and the coordinate axes in the first quadrant is A(k).

Find $\lim_{k\to\infty} A(k)$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>	
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods". 	

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

