

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Integration II [4.3]

Test Solutions

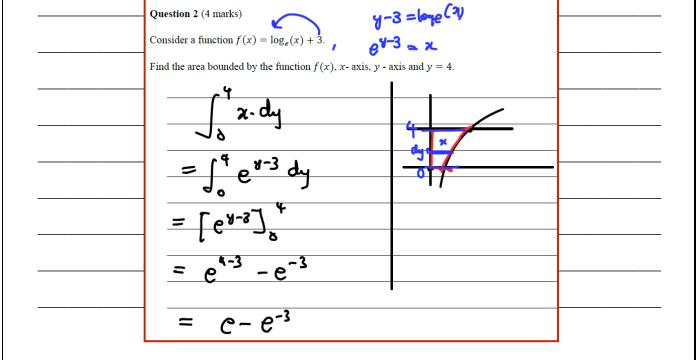
38 Marks. 1 Minute Reading. 30 Minutes Writing.

Results:

Test Questions	/19
Extension Questions	/19

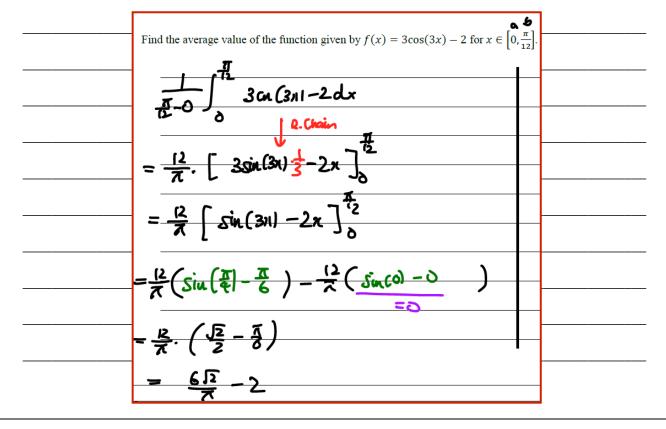
Section A: Test Questions (19 Marks)

Statement			True	False
a.	Area between two invertee function and $y = x$		✓	
b.	We can cut the area u_1 xdy .	~		
c. Average value of the function is simply the average height of the function.				
d. Area bounded by a, b, c is the reciprocal of area bounded by a^{-1}, b^{-1} and c^{-1} .				✓
False, it's the same area. When finding the average value of the function, we divide the total area by the width $(b-a)$. False. We divide the signed area.				
f. For integration by recognition, the question will always give a function to derive first.				


Space for Personal N	Notes		

Question 2 (4 marks)

Consider a function $f(x) = \log_e(x) + 3$.


Find the area bounded by the function f(x), x-axis, y-axis and y = 4.

Question 3 (3 marks)

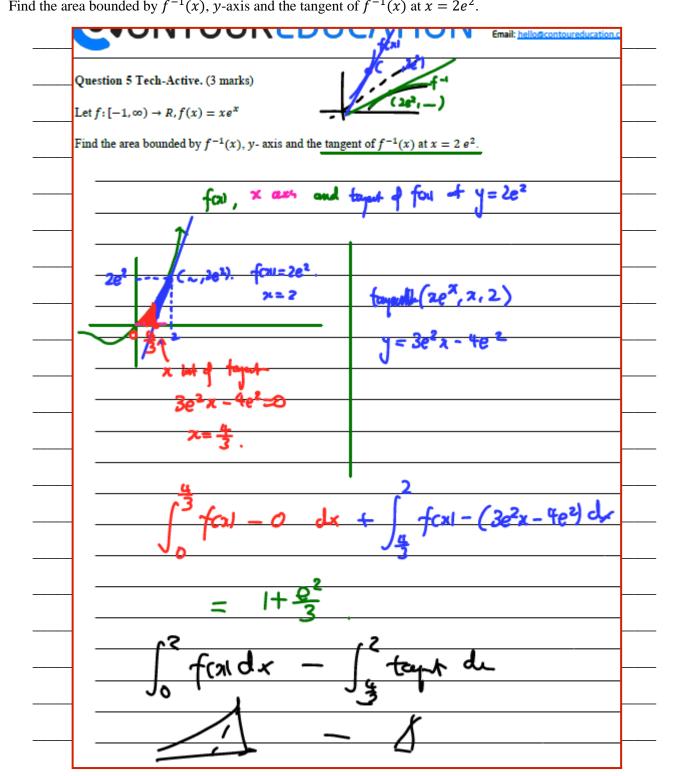
Find the average value of the function given by $f(x) = 3\cos(3x) - 2$ for $x \in \left[0, \frac{\pi}{12}\right]$.

Question 4 (6 marks)

a. Find the derivative of xe^{2x} . (2 marks)

$$\frac{1 \cdot e^{2x} + xe^{2x} \cdot 2}{\frac{d}{dx}(xe^{2x}) = e^{2x} + 2xe^{2x}}$$

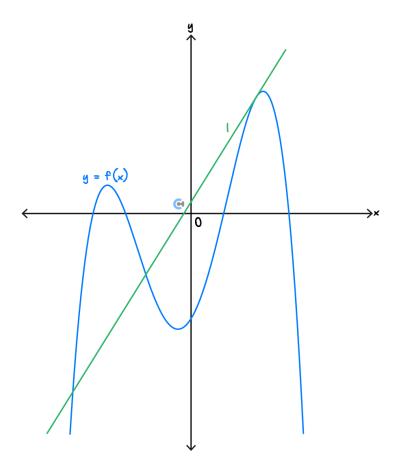
b. Hence, find the area under xe^{2x} for x = 0 to x = 1. (4 marks)


$$\int_{0}^{1} x e^{2x} dx \qquad \frac{d(xe^{2x}) - e^{2x} - 2xe^{2x}}{dx} \\
= \int_{0}^{1} \frac{d(xe^{2x}) - \frac{1}{2}e^{2x}} dx \qquad \frac{1}{2} \frac{d(xe^{2x}) - \frac{1}{2}e^{2x} - xe^{2x}}{dx} \\
= \left[\frac{1}{2} xe^{2x} - \frac{1}{4}e^{2x} \right]_{0}^{1} \\
= \left(\frac{1}{2}e^{2} - \frac{1}{4}e^{2}\right) - \left(0 - \frac{1}{4}e^{0}\right) \\
= \frac{1}{4}e^{2} + \frac{1}{4}$$

Question 5 (3 marks) **Tech-Active.**

Let
$$f: [-1, \infty) \to R$$
, $f(x) = xe^x$.

Find the area bounded by $f^{-1}(x)$, y-axis and the tangent of $f^{-1}(x)$ at $x = 2e^2$.



Section B: Extension Questions - Tech Active(19 Marks)

Question 6 (9 marks)

Consider the quartic $f : \mathbb{R} \to \mathbb{R}$, $f(x) = -x^4 - x^3 + 11x^2 + 9x - 18$. Part of the graph y = f(x) and a line l that is tangent to f is shown below.

a. The line l is tangent to f at x = 2. Find the equation for the line l. (2 marks)

f'(2) = 9. Want line with gradient 9 and through the point (2, 20). [1M] y = 9x + 2. [1A]

b. The tangent l intersects y = f(x) at x = 2 and two other points. State the x values of the two other points of intersection. Express your answers in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b, and c are integers. (2 marks)

Let
$$t(x) = 9x + 2$$
. We solve $t(x) = f(x)$. [1M]
$$x = \frac{-5 \pm \sqrt{5}}{2}$$
 are the other two solutions. [1A]

c. Find the total area of the region bounded by the tangent l and y = f(x). Express your answer in the form $\frac{a+b\sqrt{c}}{d}$. (3 marks)

The area is given by: $A = \int_{-\frac{5-\sqrt{5}}{2}}^{\frac{-5+\sqrt{5}}{2}} (f(x) - t(x)) dx + \int_{-\frac{5+\sqrt{5}}{2}}^{2} (t(x) - f(x)) dx \quad [1M \text{ for each integral}]$ $= \frac{801 + 1025\sqrt{5}}{40} \quad [1A]$

d. The average value of the function f on the interval [1, b], where b > 1, is 10. Find the possible value(s) of b correct to three decimal places. (2 marks)

We must solve $\frac{1}{b-1} \int_{1}^{b} f(x) dx = 10$ [1M] We get b = 1.869, 3.322. [1A]

Question 7 (10 marks)

Consider functions of the form:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{324x^2(a-2x)}{a^4}$$

and

$$h: \mathbb{R} \to \mathbb{R}, h(x) = \frac{36x}{a^2}$$

where a is a positive real number.

a. Find the coordinates of the local maximum of f in terms of a. (2 marks)

Solve $f'(x) = 0 \implies x = 0, \frac{a}{3}$. [1M]

The local maximum is at $\left(\frac{a}{3}, \frac{12}{a}\right)$ [1A]

b. Find the x-values of all of the points of intersection between the graphs of f and h, in terms of a where appropriate. (1 mark)

Solve f(x) = h(x) $x = 0, \frac{a}{6}, \frac{a}{3}$. [1A]

c. Determine the total area of the regions bounded by the graphs of y = f(x) and y = h(x). (2 marks)

The area is given by

$$A = \int_0^{a/6} (h(x) - f(x)) dx + \int_{a/6}^{a/3} ((f(x) - h(x))) dx \quad [1M]$$

$$= \frac{1}{4} \quad [1A]$$

Consider the function:

$$g: \left[0, \frac{a}{3}\right] \to \mathbb{R}, g(x) = \frac{324x^2(a-2x)}{a^4}$$

where a is a positive real number.

d. Evaluate $\frac{a}{3} \times g\left(\frac{a}{3}\right)$. (1 mark)

$$\frac{a}{3} \times g\left(\frac{a}{3}\right) = 4 \quad [1A]$$

e. Find the area bounded by the graph of g^{-1} , the x-axis and the line $x = g\left(\frac{a}{3}\right)$. (2 marks)

Area =
$$\frac{a}{3} \times \frac{12}{a} - \int_0^{a/3} g(x) dx = 2$$
. [1M set up a correct expression, 1A] Or by symmetry could do $\frac{1}{2} \times \frac{a}{3} \times g\left(\frac{a}{3}\right) = 2$.

f. Find the value of a for which the graphs of g and g^{-1} have the same endpoints. (1 mark)

We must have that $\frac{a}{3} = \frac{12}{a} \implies a = 6$. [1A]

g. Find the area enclosed by the graphs of g and g^{-1} when they have the same endpoints. (1 mark)

When a = 6, h(x) = x. So then using result from part c. Area = $2 \times \frac{1}{4} = \frac{1}{2}$ [1A].

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

