

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

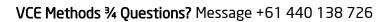
VCE Mathematical Methods ¾ Integration II [4.3]

Test

38 Marks. 1 Minute Reading. 30 Minutes Writing.

Results:

Test Questions	/19
Extension Questions	/19

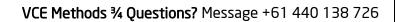

Section A: Test Questions (19 Marks)

Question 1 (3 marks)

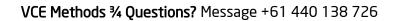
Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	Area between two inverse functions can be found by finding the area between the function and $y = x$.		
b.	We can cut the area up into horizontal strips where each strip has an area of xdy .		
c.	Average value of the function is simply the average height of the function.		
d.	Area bounded by a, b, c is the reciprocal of area bounded by a^{-1}, b^{-1} and c^{-1} .		
e.	When finding the average value of the function, we divide the total area by the width $(b-a)$.		
f.	For integration by recognition, the question will always give a function to derive first.		

50000	for	Dorconal	Notos
Space	TOF	Personal	notes

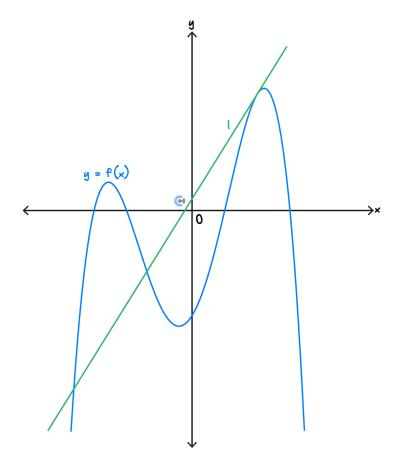


Question 2 (4 marks)	
Consider a function $f(x) = \log_e(x) + 3$.	
Find the area bounded by the function $f(x)$, x -axis, y -axis and $y = 4$.	
	_
	-
	_
	-
	-
	-
	-
	-
Space for Personal Notes	


Question 3 (3 marks) Find the average value of the function given by $f(x) = 3\cos(3x) - 2$ for $x \in \left[0, \frac{\pi}{12}\right]$.			

Space for Personal Notes

Question 4 (6 marks)		
a.	Find the derivative of xe^{2x} . (2 marks)	
	·	
b.	Hence, find the area under xe^{2x} for $x = 0$ to $x = 1$. (4 marks)	
	·	
Space for Personal Notes		
•		


Question 5 (3 marks) Tech-Active.		
Let $f: [-1, \infty) \to R$, $f(x) = xe^x$.		
Find the area bounded by $f^{-1}(x)$, y-axis and the tangent of $f^{-1}(x)$ at $x = 2e^2$.		
 '		
·		
· · · · · · · · · · · · · · · · · · ·		

Section B: Extension Questions - Tech Active(19 Marks)

Question 6 (9 marks)

Consider the quartic $f : \mathbb{R} \to \mathbb{R}$, $f(x) = -x^4 - x^3 + 11x^2 + 9x - 18$. Part of the graph y = f(x) and a line l that is tangent to f is shown below.

a. The line l is tangent to f at x = 2. Find the equation for the line l. (2 marks)

·		

VCE Methods ¾ Questions? Message +61 440 138 726

b.	The tangent l intersects $y = f(x)$ at $x = 2$ and two other points. State the x values of the two other points of intersection. Express your answers in the form $\frac{a \pm \sqrt{b}}{c}$, where a , b , and c are integers. (2 marks)
c.	Find the total area of the region bounded by the tangent l and $y = f(x)$. Express your answer in the form $\frac{a+b\sqrt{c}}{d}$. (3 marks)
d.	The average value of the function f on the interval $[1, b]$, where $b > 1$, is 10. Find the possible value(s) of b correct to three decimal places. (2 marks)
Sp	ace for Personal Notes

Question 7 (10 marks)

Consider functions of the form:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{324x^2(a-2x)}{a^4}$$

and

$$h: \mathbb{R} \to \mathbb{R}, h(x) = \frac{36x}{a^2}$$

where a is a positive real number.

a. Find the coordinates of the local maximum of f in terms of a. (2 marks)

b. Find the x-values of all of the points of intersection between the graphs of f and h, in terms of a where appropriate. (1 mark)

c. Determine the total area of the regions bounded by the graphs of y = f(x) and y = h(x). (2 marks)

Consider the function:

$$g: \left[0, \frac{a}{3}\right] \to \mathbb{R}, g(x) = \frac{324x^2(a-2x)}{a^4}$$

where a is a positive real number.

- **d.** Evaluate $\frac{a}{3} \times g\left(\frac{a}{3}\right)$. (1 mark)
- **e.** Find the area bounded by the graph of g^{-1} , the x-axis and the line $x = g\left(\frac{a}{3}\right)$. (2 marks)

f. Find the value of a for which the graphs of g and g^{-1} have the same endpoints. (1 mark)

g. Find the area enclosed by the graphs of g and g^{-1} when they have the same endpoints. (1 mark)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

