

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Integration II [4.3]

Homework Solutions

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2-Pg 10
Supplementary Questions	Pg 11-Pg 19

Section A: Compulsory Questions

Sub-Section: Fundamentals

Question 1

a. Let $f(x) = \ln(3x + 1)$.

Find the rule for the inverse function $f^{-1}(x)$. [4.3.1]

 $y = \ln (3x + 1)$

Swap x and y for inverse \Rightarrow x = ln (3y + 1) **1M**

$$\Rightarrow y = \frac{e^x - 1}{3}$$

$$\Rightarrow y = \frac{e^x - 1}{3}$$

$$f^{-1}(x) = \frac{e^x - 1}{3} \mathbf{1A}$$

b. Hence, find the area bounded by the graph of y = f(x), the y-axis, the x-axis and the line y = 2. [4.3.1]

 $A = \int_0^2 \frac{e^y - 1}{3} dy \, \mathbf{1M}$ $= \frac{1}{3} [e^y - y]_0^2 \, \mathbf{1M}$ $= \frac{1}{3} (e^2 - 2 - (1 - 0))$ $= \frac{1}{3} (e^2 - 3) \, \mathbf{1A}$

$$= \frac{1}{3} [e^{y} - y]_0^2 \mathbf{1M}$$

$$=\frac{1}{3}(e^2-2-(1-0))$$

$$= \frac{1}{3}(e^2 - 3) \, \mathbf{1A}$$

Question 2 [4.3.2]

Let $f(x) = x^2 - 2x + 3$. Find the average value of the function over the interval [1,4].

5

Question 3

a. Show that
$$\frac{d}{dx}(x^2 \ln x) = 2x \ln x + x$$
. [4.3.3]

$$\frac{d}{dx}(x^2\ln x) = 2x\ln x + x^2 \times \frac{1}{x}$$
 1M

 $\frac{d}{dx}(x^2 \ln x) = 2x \ln x + x \text{ as required.}$

b. Hence, evaluate
$$\int x \ln x \, dx$$
. [4.3.3]

$$\frac{d}{dx}(x^2 \ln x) = 2x \ln x + x$$

$$2x\ln x = \frac{d}{dx}(x^2\ln x) - x$$

$$x \ln x = \frac{1}{2} \left(\frac{d}{dx} (x^2 \ln x) - x \right)$$

$$\int x \ln x \, dx = \frac{1}{2} \int \left(\frac{d}{dx} (x^2 \ln x) - x \right) dx$$
 1M

$$= \frac{1}{2} \left(x^2 \ln x - \frac{x^2}{2} \right) + C$$

$$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C \mathbf{1A}$$

Let $f(x) = x^3$.

a. Find the points where $f(x) = f^{-1}(x)$. [4.3.1]

f(x) = x $\Rightarrow x^3 = x \mathbf{1M}$ $\Rightarrow x^3 - x = 0$ $\Rightarrow x(x^2 - 1) = 0$ $\Rightarrow x = 0, \pm 1 \mathbf{1M}$

(-1,-1),(0,0),(1,1) **1A**

b. Hence, find the exact area between the graphs of f(x) and $f^{-1}(x)$. [4.3.1]

Area = $2 \int_{-1}^{0} (x^3 - x) dx + 2 \int_{0}^{1} (x - x^3) dx$ **1M** $\int_{-1}^{0} (x^3 - x) dx = \left[\frac{1}{4}x^4 - \frac{1}{2}x^2\right]_{-1}^{0} = (0 - 0) - \left(\frac{1}{4} - \frac{1}{2}\right) = -\left(-\frac{1}{4}\right) = \frac{1}{4}$ $\int_{0}^{1} (x - x^3) dx = \left[\frac{1}{2}x^2 - \frac{1}{4}x^4\right]_{0}^{1} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$

1M for antiderivatives

 $2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} = \frac{1}{2} + \frac{1}{2} = \boxed{1}$ **1A**

Sub-Section: Problem Solving

Question 5

Let $f(x) = e^{-3x} \sin(2x)$ and $g(x) = e^{-3x} \cos(2x)$.

a. Differentiate $e^{-3x}\sin(2x)$ and $e^{-3x}\cos(2x)$ with respect to x. [4.3.3]

$$\frac{d}{dx}(e^{-3x}\sin(2x)) = \frac{d}{dx}(e^{-3x}) \cdot \sin(2x) + e^{-3x} \cdot \frac{d}{dx}(\sin(2x))$$
$$= -3e^{-3x}\sin(2x) + 2e^{-3x}\cos(2x) \mathbf{1A}$$
$$\frac{d}{dx}(e^{-3x}\cos(2x)) = -3e^{-3x}\cos(2x) - 2e^{-3x}\sin(2x) \mathbf{1A}$$

b. Hence, show that: [4.3.3]

$$e^{-3x}\sin(2x) + c_1 = -3\int e^{-3x}\sin(2x) dx + 2\int e^{-3x}\cos(2x) dx$$

and

$$e^{-3x}\cos(2x) + c_2 = -3\int e^{-3x}\cos(2x) dx - 2\int e^{-3x}\sin(2x) dx$$

$$\frac{d}{dx}(e^{-3x}\sin(2x)) = -3e^{-3x}\sin(2x) + 2e^{-3x}\cos(2x)$$

$$e^{-3x}\sin(2x) + c_1 = \int (-3e^{-3x}\sin(2x) + 2e^{-3x}\cos(2x)) dx \mathbf{1}\mathbf{M}$$

$$\Rightarrow e^{-3x}\sin(2x) + c_1 = -3\int e^{-3x}\sin(2x) dx + 2\int e^{-3x}\cos(2x) dx$$

$$\frac{d}{dx}(e^{-3x}\cos(2x)) = -3e^{-3x}\cos(2x) - 2e^{-3x}\sin(2x)$$

$$e^{-3x}\cos(2x) + c_2 = \int (-3e^{-3x}\cos(2x) - 2e^{-3x}\sin(2x)) dx \mathbf{1}\mathbf{M}$$

$$e^{-3x}\cos(2x) + c_2 = -3\int e^{-3x}\cos(2x) dx - 2\int e^{-3x}\sin(2x) dx$$



Let
$$I = \int e^{-3x} \sin(2x) dx$$
, $J = \int e^{-3x} \cos(2x) dx$
 $e^{-3x} \sin(2x) = -3I + 2J$ (1)
 $e^{-3x} \cos(2x) = -3J - 2I$ (2)
 $3e^{-3x} \sin(2x) = -9I + 6J$ (3)
 $2e^{-3x} \cos(2x) = -6J - 4I$ (4)

1M for equations

Add eq. 3 and 4:

$$3e^{-3x}\sin(2x) + 2e^{-3x}\cos(2x) = -13I \quad \mathbf{1M}$$

$$3e^{-3x}\sin(2x) + 2e^{-3x}\cos(2x) = -13I \Rightarrow I = \frac{-1}{13}(3e^{-3x}\sin(2x) + 2e^{-3x}\cos(2x))$$

$$\int e^{-3x}\sin(2x) \, dx = \frac{e^{-3x}}{13}(-3\sin(2x) - 2\cos(2x)) + C \quad \mathbf{1A}$$

Question 6

For this question, only consider quadrant 1 of the cartesian x-y plane.

a. Find the area enclosed between the parabolas $y = x^2$ and $y^2 = x$. [4.3.1]

$$A = \int_0^1 (\sqrt{x} - x^2) dx \, \mathbf{1M}$$

$$= \int_0^1 x^{\frac{1}{2}} - x^2 dx$$

$$= \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{1}{3} x^3 \right]_0^1 \, \mathbf{1M}$$

$$= \frac{2}{3} - \frac{1}{3} = \left[\frac{1}{3} \right] \, \mathbf{1A}$$

Or find area with y = x then double.

b. Show that the curves $y = x^n$ and $y^n = x$ intersect at the point (1,1) for all positive integers n. [4.3.1]

 $(x^{n})^{n} = x^{n^{2}} = x \Rightarrow x^{n^{2}-1} = 1 \text{ 1M}$ So x = 1 then $y = x^{n} = 1^{n} = 1$ Intersect (1,1)

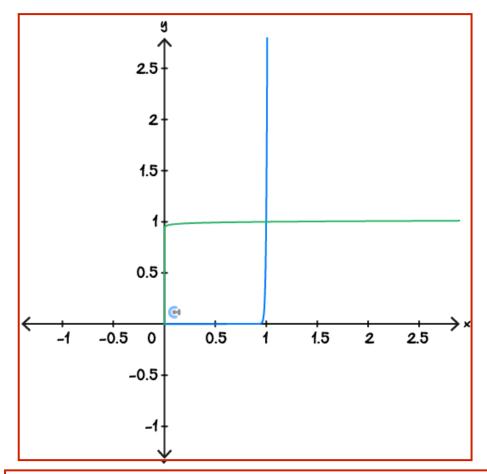
CONTOUREDUCATION

c. Show that the area of the region contained between the curves $y = x^n$ and $y^n = x$ is $\frac{n-1}{n+1}$. [4.3.1]

Area between y = x and x^n $A = \int_0^1 (x - x^n) dx \mathbf{1M}$ $= \left[\frac{x^2}{2} - \frac{x^{n+1}}{n+1} \right]_0^1 \mathbf{1M}$ $= \frac{1}{2} - \frac{1}{n+1}$

Total Area = $2A = 2\left(\frac{1}{2} - \frac{1}{n+1}\right) = 1 - \frac{2}{n+1}$ **1M** $= \frac{n+1-2}{n+1}$ $= \frac{n-1}{n+1}$

d. Describe the area between the curves for very large values of n. You use a CAS calculator to help you visualise. [4.3.1]



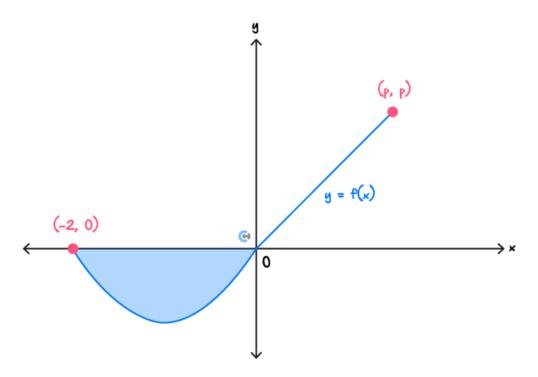
The area approaches 1 as $n \to \infty$ **1M**

Either visualise behaviour or determine the horizontal asymptote of answer in **part c.**

https://www.desmos.com/calculator/7gxcco74lz

Question 7 [4.3.2]

The graph of a function $f: [-2, p] \to \mathbb{R}$ is shown. It consists of a curved segment from x = -2 to x = 0 and and a straight line from the origin 0 to the point (p, p), where p > 0. The area of the shaded region under the curve from x = -2 to x = 0 is $\frac{25}{8}$. The average value of f over the interval [-2, p] is zero.



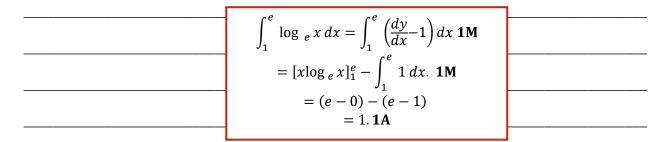
Find the value of p.

Area of triangle from 0 to $p=\frac{1}{2}\cdot \text{base} \cdot \text{height} = \frac{1}{2}\cdot p\cdot p = \frac{p^2}{2}$ $\frac{p^2}{2} = \frac{25}{8} \text{ 1M}$ $p=\sqrt{\frac{25}{4}} = \frac{5}{2} \text{ as } p>0 \text{ 1A}$

a. If $y = x \log_e x$, find $\frac{dy}{dx}$. [4.3.3]

$$\frac{dy}{dx} = 1 \cdot \log_e x + x \cdot \frac{1}{x} \quad \mathbf{1M}$$
$$= \log_e x + 1. \mathbf{1A}$$

b. Hence, evaluate $\int_1^e \log_e x \, dx$. [4.3.3]



c. If $y = x(\log_e x)^n$, where *n* is a natural number, find $\frac{dy}{dx}$. [4.3.3]

$$\frac{dy}{dx} = (\log_e x)^n + x \cdot n(\log_e x)^{n-1} \cdot \frac{1}{x} \mathbf{1M}$$

$$= (\log_e x)^n + n(\log_e x)^{n-1} \cdot \mathbf{1A}$$

d. Let $I_n = \int_1^e (\log_e x)^n dx$.

Show that, for n > 1, $I_n + nI_{n-1} = e$. [4.3.3]

$$\int_{1}^{e} \frac{dy}{dx} dx = \int_{1}^{e} (\log_{e} x)^{n} dx + n \int_{1}^{e} (\log_{e} x)^{n-1} dx \mathbf{1M}$$

$$y(e) - y(1) = I_{n} + nI_{n-1} \mathbf{1M}$$

$$I_{n} + nI_{n-1} = e - 0 \mathbf{1M}$$

$$I_{n} + nI_{n-1} = e$$

e. Find $\int_1^e (\log_e x)^3 dx$. **[4.3.3]**

$$I_{n} + nI_{n-1} = e.$$

$$I_{3} + 3I_{2} = e \quad (1)$$

$$I_{2} + 2I_{1} = e \quad (2)$$

$$I_{1} = \int_{1}^{e} \log_{e} x \, dx = 1$$

$$I_{2} + 2(1) = e \Rightarrow I_{2} = e - 2. \quad \mathbf{1M}$$

$$I_{3} + 3(e - 2) = e \quad \mathbf{1M}$$

$$\Rightarrow I_{3} + 3e - 6 = e$$

$$\Rightarrow I_{3} = e - (3e - 6)$$

$$= -2e + 6. \quad \mathbf{1A}$$

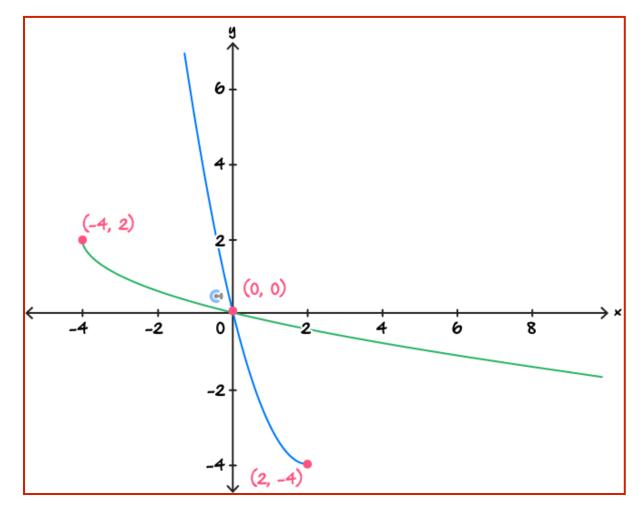
Section B: Supplementary Questions

Sub-Section: Exam 1

Question 9

Let $f: (-\infty, 2] \to \mathbb{R}, f(x) = x^2 - 4x$.

A portion of the graph of y = f(x) is shown below.



a. State the range of f. (1 mark) [4.3.1]

 $[-4,\infty)$. 1A

b. On the same set of axes, sketch the graph of the inverse function $y = f^{-1}(x)$. Label any endpoints and any intercepts with their coordinates. [4.3.1]

1A coordinates

c. Find the inverse function f^{-1} . [4.3.1]

 $f(x) = x^2 - 4x = (x - 2)^2 - 4.$	
 Swap x and y: $x = (y - 2)^2 - 4$ 1M $y = 2 \pm \sqrt{4 + x}$	
 •	
 As range of inverse is $(-\infty, 2]$, $f^{-1}(x) = 2 - \sqrt{x+4} \mathbf{1A}$	
 f^{-1} has domain $[-4, \infty)$. 1A	

d. Calculate the total area of the region(s) enclosed by the curves y = f(x), $y = f^{-1}(x)$ and the line y = -x + 2. [4.3.1]

Area =
$$2\int_0^1 x^2 - 4x - (-x - 2) dx + 2\int_1^2 -x - 2 - (x^2 - 4x) dx + \frac{1}{2} * 2 * 2 2M$$

1M for integrals, 1M triangle – using symmetry see graph.

Integral part:

$$2\left[\int_{0}^{1} (x^{2} - 3x + 2) dx + \int_{1}^{2} (-x^{2} + 3x - 2) dx\right]$$

$$= 2\left[\left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right)\right]_{0}^{1} + \left(-\frac{x^{3}}{3} + \frac{3x^{2}}{2} - 2x\right)\right]_{1}^{2} \mathbf{1M}$$

$$= 2\left[\left(\left(\frac{1}{3} - \frac{3}{2} + 2\right) - 0\right) + \left(\left(-\frac{8}{3} + 6 - 4\right) - \left(-\frac{1}{3} + \frac{3}{2} - 2\right)\right)\right]$$

$$= 2\left[\frac{5}{6} + \left(-\frac{8}{3} + 2 - \left(-\frac{1}{3} + \frac{3}{2} - 2\right)\right)\right]$$

$$= 2\left[\frac{5}{6} - \frac{8}{3} + 2 + \frac{1}{3} - \frac{3}{2} + 2\right]$$

$$= 2\left[\frac{5}{6} + \left(-\frac{8}{3} + \frac{6}{3}\right) + \frac{1}{3} - \frac{3}{2} + 2\right]$$

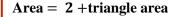
$$= 2\left[\frac{5}{6} - \frac{2}{3} + \frac{1}{3} - \frac{3}{2} + 2\right]$$

$$= 2\left[\frac{5}{6} + \left(-\frac{4}{6} + \frac{2}{6}\right) - \frac{9}{6} + \frac{12}{6}\right]$$

$$= 2\left[\frac{5}{6} - \frac{2}{6} - \frac{9}{6} + \frac{12}{6}\right]$$

$$= 2\left[\frac{5}{6} - \frac{2}{6} - \frac{9}{6} + \frac{12}{6}\right]$$

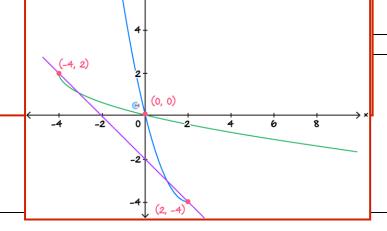
 $= 2\begin{bmatrix} \frac{6}{6} \end{bmatrix}$ $= 2 \cdot 1 = 2 \mathbf{1M}$



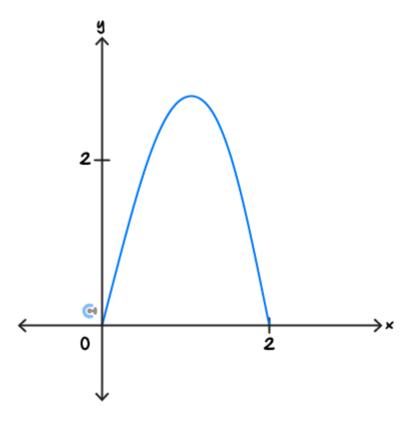
$$= 2 + 2$$

= 4

1A



Part of the graph of y = f(x) is shown below. The rule $A(k) = 2k \sin(k)$ gives the area bounded by the graph of f, the horizontal axis, and the vertical line x = k.



a. State the value of $A\left(\frac{\pi}{4}\right)$. [4.3.2]

$$A\left(\frac{\pi}{4}\right) = 2 \cdot \frac{\pi}{4} \sin\left(\frac{\pi}{4}\right) = \frac{\pi}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\pi\sqrt{2}}{4}.$$
 1A

b. Evaluate $f(\frac{\pi}{4})$. [4.3.2]

$$\frac{d}{dk}[A(k)] = f(k).$$

$$f(k) = \frac{d}{dk}[2k\sin(k)] = 2\sin(k) + 2k\cos(k) \mathbf{1M}$$

$$f\left(\frac{\pi}{4}\right) = 2\sin\left(\frac{\pi}{4}\right) + 2\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right).$$

$$f\left(\frac{\pi}{4}\right) = 2 \cdot \frac{\sqrt{2}}{2} + 2 \cdot \frac{\pi}{4} \cdot \frac{\sqrt{2}}{2} = \sqrt{2} + \frac{\pi\sqrt{2}}{4}.\mathbf{1A}$$

c. Consider the average value of the function f over the interval [0, k] where k lies in the interval [0, 2]. Find the value of k that gives the maximum average value and state this maximum average value. [4.3.2]

$$\frac{1}{k} \int_0^k f(x) \, dx = \frac{A(k)}{k}.$$

$$\frac{A(k)}{k} = \frac{2 k \sin(k)}{k} = 2 \sin(k).\mathbf{1M}$$

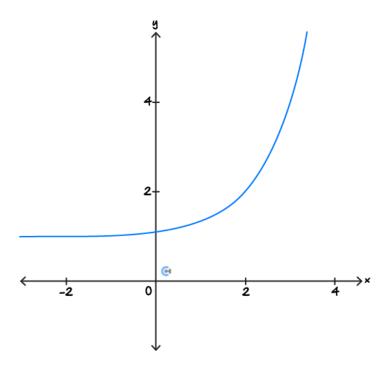
$$k = \frac{\pi}{2}$$
. 1A

Max average value = 2 1A

Sub-Section: Exam 2

Question 11

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3^{x-2} + 1$. Part of the graph of f is shown below.



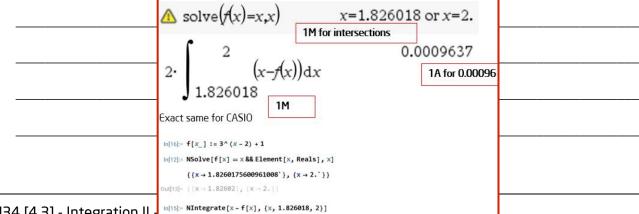
a. State f^{-1} , the inverse function of f. [4.3.1]

$$f^{-1}(x) = \log_{3}(x-1) + 2 \quad 1A, \text{Domain: } x > 1 \quad 1M$$
Define $f(x) = 3^{x-2} + 1$

$$\text{Solve}(f(y) = x, y)$$

$$y = \frac{\ln(9 \cdot (x-1))}{\ln(3)} \text{ and } x > 1$$

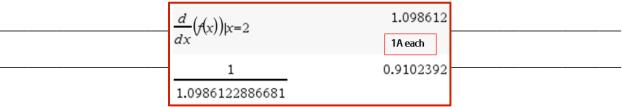
b. Find the area bounded by the graphs of f and f^{-1} . Give your answer correct to 5 decimal places. [4.3.1]



MM34 [4.3] - Integration II -

CONTOUREDUCATION

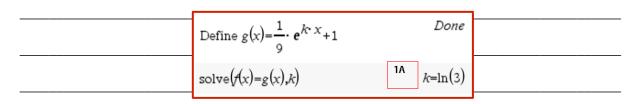
c. Find the gradient of f and the gradient of f^{-1} at x = 2. [4.3.1]



The functions g, where $k \in \mathbb{R}^+$, are defined with domain \mathbb{R} such that, $g(x) = \frac{1}{9}e^{kx} + 1$.

d.

i. Find the value of k such that g(x) = f(x). [4.3.1]



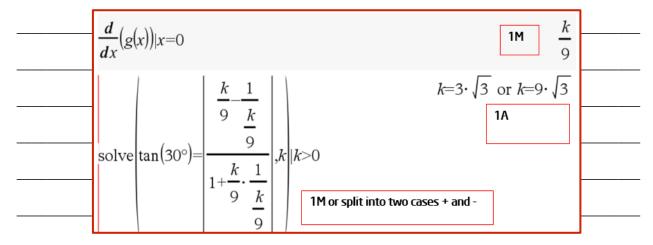
ii. Find the rule and domain for the inverse function $g^{-1}(x)$ in terms of k. [4.3.1]

$$g^{-1}(x) = \frac{1}{k} \ln[9(x-1)] \quad 1A \text{ where } x > 1 \quad 1A$$

$$\text{solve}(g(y)=x,y)$$

$$y = \frac{\ln(9 \cdot (x-1))}{k} \text{ and } x > 1$$

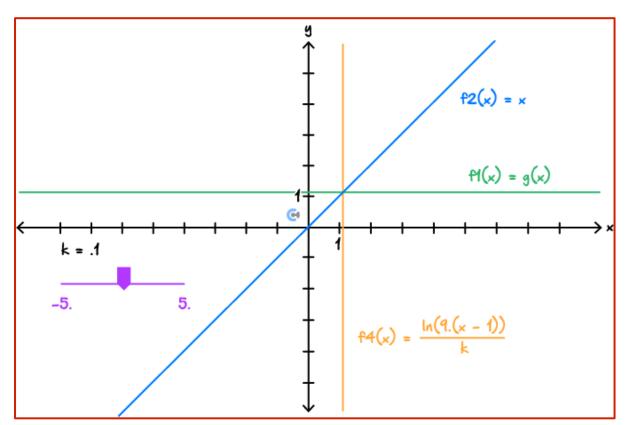
e. The lines L_1 and L_2 are the tangents at the origin to the graphs of g and g^{-1} , respectively. Find the value(s) of k for which the angle between L_1 and L_2 is 30°. [4.3.1]



- **f.** Let p be the value of k for which $g(x) = g^{-1}(x)$ has only one solution.
 - i. Find p correct to three decimal places. [4.3.1]

solve
$$g(x)=x$$
 and $\frac{d}{dx}(g(x))=1,x,k$
 $x=1.908263$ and $k=1.101003$

ii. Let A(k) be the area bounded by the graphs of g, g^{-1} and both horizontal and vertical axes for all k < p. State the largest value of b such that A(k) > b. [4.3.1]

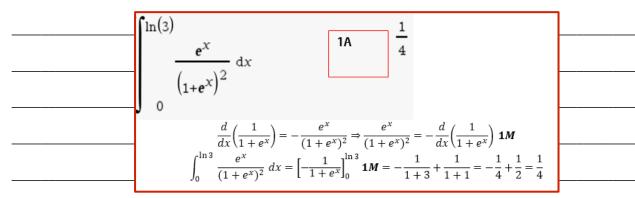


As k approaches 0 we see the area becomes a square of length 1. Hence, $b = 1 \times 1 = 1$.

a. Show that
$$\frac{d}{dx} \left(\frac{1}{1 + e^x} \right) = -\frac{e^x}{(1 + e^x)^2}$$
. [4.3.3]

$$\frac{d}{dx}((1+e^x)^{-1}) = -(1+e^x)^{-2} \cdot e^x \mathbf{1M} = -\frac{e^x}{(1+e^x)^2}$$

b. Hence, or otherwise, find the exact value of $\int_0^{\ln 3} \frac{e^x}{(1+e^x)^2} dx$ using **integration by recognition. [4.3.3**]



- **c.** Let $A(k) = \int_0^{\ln k} \frac{e^x}{(1+e^x)^2} dx$ where k > 0.
 - Show that $A(k) = \frac{k-1}{k+1} \cdot \frac{1}{2}$. [4.3.3]

$$A(k) = \int_0^{\ln k} \frac{e^x}{(1+e^x)^2} dx = \left[-\frac{1}{1+e^x} \right]_0^{\ln k} \mathbf{1M} = -\frac{1}{1+k} + \frac{1}{2}$$
$$= \frac{1}{2} - \frac{1}{1+k} = \frac{(1+k)-2}{2(1+k)} \mathbf{1M} = \frac{k-1}{2(k+1)}$$

ii. It is known that A(k) represents the area of a function f(x) from x = 0 to $x = \ln k$. Find the smallest b such that b > A(k) for all k > 0. Indicate what this means in terms of area. [4.3.3]

$\lim_{k \to \infty} \left \int_{0}^{\ln(k)} \frac{e^{x}}{\left(1 + e^{x}\right)^{2}} \mathrm{d}x \right $	1 1 2 2 1 1 M using limits or finding horizontal asymptote of A(k)	$1A \text{ for } b = \frac{1}{2}$	
 This means the graph has a finite area 1			

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults

Text-Based Support

- Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below).
- One active booking at a time (must attend before booking the next).
- Message <u>+61 440 138 726</u> with questions.
- Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

