

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Integration II [4.3]

Homework

## **Admin Info & Homework Outline:**

| Student Name                |             |
|-----------------------------|-------------|
| Questions You Need Help For |             |
| Compulsory Questions        | Pg 2-Pg 10  |
| Supplementary Questions     | Pg 11-Pg 19 |



# Section A: Compulsory Questions



# **Sub-Section**: Fundamentals

| Question 1 |                                                                                                                 |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| a.         | <b>a.</b> Let $f(x) = \ln(3x + 1)$ .                                                                            |  |  |  |  |  |  |
|            | Find the rule for the inverse function $f^{-1}(x)$ . [4.3.1]                                                    |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
| b.         | Hence, find the area bounded by the graph of $y = f(x)$ , the y-axis, the x-axis and the line $y = 2$ . [4.3.1] |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |
|            |                                                                                                                 |  |  |  |  |  |  |

**Question 2 [4.3.2]** 

Let  $f(x) = x^2 - 2x + 3$ . Find the average value of the function over the interval [1,4].

Question 3

**a.** Show that  $\frac{d}{dx}(x^2 \ln x) = 2x \ln x + x$ . [4.3.3]

b. Hence, evaluate  $\int x \ln x \, dx$ . [4.3.3]

Let  $f(x) = x^3$ .

**a.** Find the points where  $f(x) = f^{-1}(x)$ . [4.3.1]

**b.** Hence, find the exact area between the graphs of f(x) and  $f^{-1}(x)$ . [4.3.1]





# **Sub-Section: Problem Solving**

### **Question 5**

Let  $f(x) = e^{-3x} \sin(2x)$  and  $g(x) = e^{-3x} \cos(2x)$ .

**a.** Differentiate  $e^{-3x}\sin(2x)$  and  $e^{-3x}\cos(2x)$  with respect to x. [4.3.3]

**b.** Hence, show that: **[4.3.3]** 

$$e^{-3x}\sin(2x) + c_1 = -3\int e^{-3x}\sin(2x) dx + 2\int e^{-3x}\cos(2x) dx$$

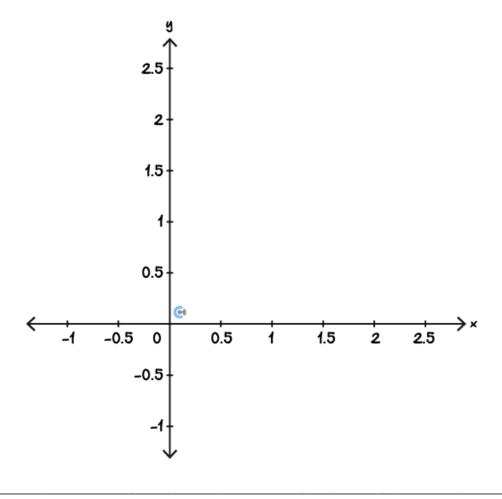
and

$$e^{-3x}\cos(2x) + c_2 = -3\int e^{-3x}\cos(2x) dx - 2\int e^{-3x}\sin(2x) dx$$

**c.** Use the two equations from **part b.** to determine  $\int e^{-3x} \sin(2x) dx$ . [4.3.3]

### **Question 6**

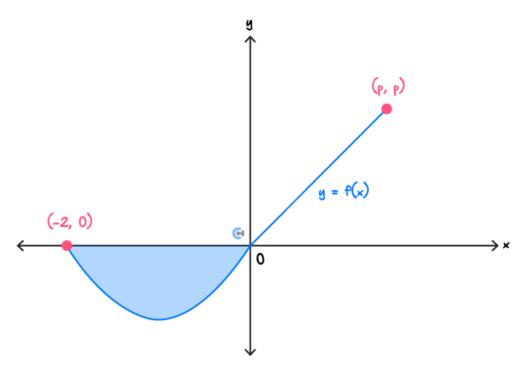
For this question, only consider quadrant 1 of the cartesian x-y plane.


**a.** Find the area enclosed between the parabolas  $y = x^2$  and  $y^2 = x$ . [4.3.1]

**b.** Show that the curves  $y = x^n$  and  $y^n = x$  intersect at the point (1,1) for all positive integers n. [4.3.1]

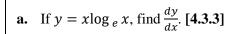


c. Show that the area of the region contained between the curves  $y = x^n$  and  $y^n = x$  is  $\frac{n-1}{n+1}$ . [4.3.1]


**d.** Describe the area between the curves for very large values of n. You use a CAS calculator to help you visualise. [4.3.1]






### **Question 7 [4.3.2]**

The graph of a function  $f: [-2, p] \to \mathbb{R}$  is shown. It consists of a curved segment from x = -2 to x = 0 and and a straight line from the origin 0 to the point (p, p), where p > 0. The area of the shaded region under the curve from x = -2 to x = 0 is  $\frac{25}{8}$ . The average value of f over the interval [-2, p] is zero.



Find the value of p.

|                  | <br> | <br> |      |
|------------------|------|------|------|
| <br><del> </del> | <br> | <br> | <br> |
|                  |      |      |      |
|                  |      |      |      |



**b.** Hence, evaluate  $\int_{1}^{e} \log_{e} x \, dx$ . [4.3.3]

| c. | If $y = x(\log_e x)^n$ | , where $n$ is a | natural number, | find $\frac{dy}{dx}$ . [4.3.3] |
|----|------------------------|------------------|-----------------|--------------------------------|
|----|------------------------|------------------|-----------------|--------------------------------|

**d.** Let  $I_n = \int_1^e (\log_e x)^n dx$ .

Show that, for n > 1,  $I_n + nI_{n-1} = e$ . [4.3.3]

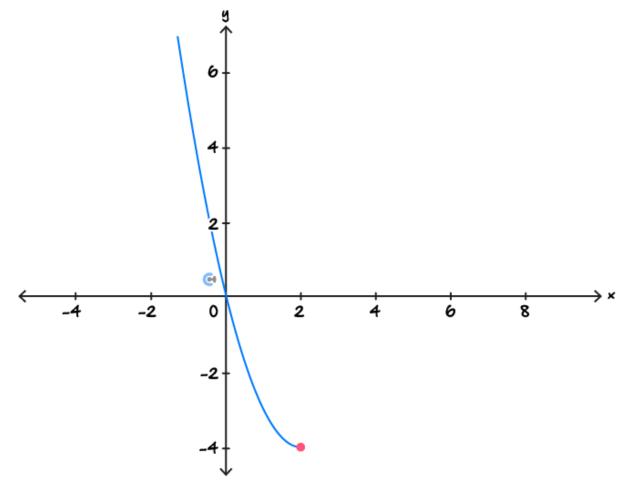


VCE Methods ¾ Questions? Message +61 440 138 726

| e. F | Find $\int_{1}^{e} (\log_{e} x)^{3} dx$ . [4.3.3] |
|------|---------------------------------------------------|
| _    |                                                   |
| -    |                                                   |
| _    |                                                   |
| _    |                                                   |
| _    |                                                   |
| _    |                                                   |
| _    |                                                   |
|      |                                                   |

| Sp | ace for Personal Notes |  |  |
|----|------------------------|--|--|
|    |                        |  |  |




# Section B: Supplementary Questions

# **Sub-Section**: Exam 1

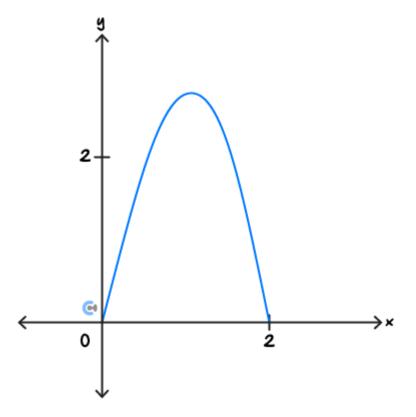
### **Question 9**

Let  $f: (-\infty, 2] \to \mathbb{R}, f(x) = x^2 - 4x$ .

A portion of the graph of y = f(x) is shown below.



**a.** State the range of f. (1 mark) [4.3.1]


**b.** On the same set of axes, sketch the graph of the inverse function  $y = f^{-1}(x)$ . Label any endpoints and any intercepts with their coordinates. [4.3.1]



# VCE Methods ¾ Questions? Message +61 440 138 726

| Find the inverse function $f^{-1}$ . [4.3.1]                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
| Calculate the total area of the region(s) enclosed by the curves $y = f(x)$ , $y = f^{-1}(x)$ and the line $y = -x + 2$ . [4.3.1] |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |

Part of the graph of y = f(x) is shown below. The rule  $A(k) = 2k \sin(k)$  gives the area bounded by the graph of f, the horizontal axis, and the vertical line x = k.



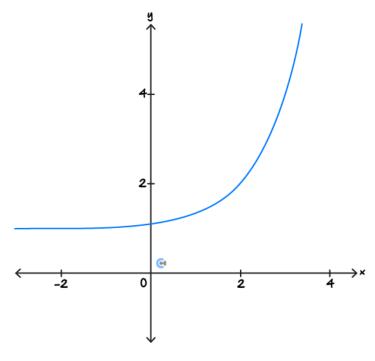
**a.** State the value of  $A\left(\frac{\pi}{4}\right)$ . [4.3.2]

| b. | Evaluate <i>f</i> | $\left(\frac{\pi}{4}\right)$ . [4.3.2] |
|----|-------------------|----------------------------------------|
|----|-------------------|----------------------------------------|



VCE Methods ¾ Questions? Message +61 440 138 726

| c. | Consider the average value of the function $f$ over the interval $[0, k]$ where $k$ lies in the interval $[0, 2]$ . Find the value of $k$ that gives the maximum average value and state this maximum average value. [4.3.2] | ne |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
| Sp | pace for Personal Notes                                                                                                                                                                                                      |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |
|    |                                                                                                                                                                                                                              |    |






# **Sub-Section**: Exam 2

**Question 11** 

Let  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = 3^{x-2} + 1$ . Part of the graph of f is shown below.



**a.** State  $f^{-1}$ , the inverse function of f. [4.3.1]

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

**b.** Find the area bounded by the graphs of f and  $f^{-1}$ . Give your answer correct to 5 decimal places. [4.3.1]

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |

**c.** Find the gradient of f and the gradient of  $f^{-1}$  at x = 2. [4.3.1]

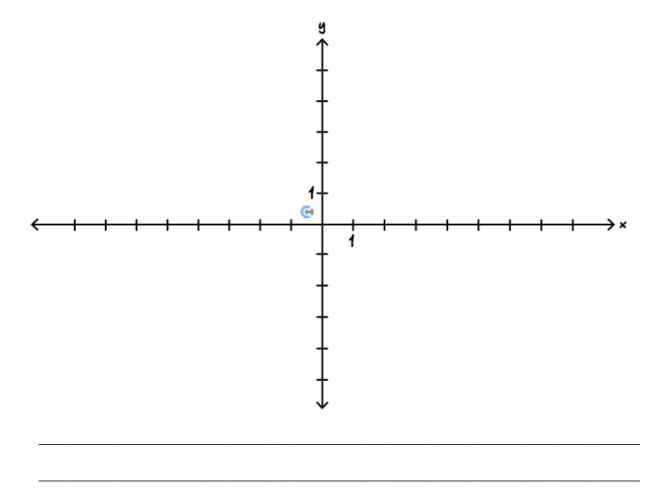
\_\_\_\_\_

The functions g, where  $k \in \mathbb{R}^+$ , are defined with domain  $\mathbb{R}$  such that,  $g(x) = \frac{1}{9}e^{kx} + 1$ .

d.

i. Find the value of k such that g(x) = f(x). [4.3.1]

ii. Find the rule and domain for the inverse function  $g^{-1}(x)$  in terms of k. [4.3.1]


e. The lines  $L_1$  and  $L_2$  are the tangents at the origin to the graphs of g and  $g^{-1}$ , respectively. Find the value(s) of k for which the angle between  $L_1$  and  $L_2$  is 30°. [4.3.1]



**f.** Let p be the value of k for which  $g(x) = g^{-1}(x)$  has only one solution.

i. Find p correct to three decimal places. [4.3.1]

ii. Let A(k) be the area bounded by the graphs of g,  $g^{-1}$  and both horizontal and vertical axes for all k < p. State the largest value of b such that A(k) > b. [4.3.1]



**a.** Show that  $\frac{d}{dx} \left( \frac{1}{1 + e^x} \right) = -\frac{e^x}{(1 + e^x)^2}$ . [4.3.3]

**b.** Hence, or otherwise, find the exact value of  $\int_0^{\ln 3} \frac{e^x}{(1+e^x)^2} dx$  using **integration by recognition. [4.3.3]** 

**c.** Let  $A(k) = \int_0^{\ln k} \frac{e^x}{(1+e^x)^2} dx$  where k > 0.

i. Show that  $A(k) = \frac{k-1}{k+1} \cdot \frac{1}{2}$ . [4.3.3]

\_\_\_\_\_

ii. It is known that A(k) represents the area of a function f(x) from x = 0 to  $x = \ln k$ . Find the smallest b such that b > A(k) for all k > 0. Indicate what this means in terms of area. [4.3.3]



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

# VCE Mathematical Methods 3/4

# Free 1-on-1 Support

### Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

### 1-on-1 Video Consults

### **Text-Based Support**

- Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below).
- One active booking at a time (must attend before booking the next).
- Message <u>+61 440 138 726</u> with questions.
- Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

