

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Integration I [4.2]

Workbook

Outline:

П			
Introduction	Pg 2-4	Signed vs Total Areas ➤ Signed Area	Pg 25-31
Approximating the Area	Pg 5-17	Total Area	
Riemann Sum			
Trapezoidal Approximation		Area Between Two Functions→ Area Between Two Functions	Pg 32-38
Finding the Exact Area	Pg 18-24	Tackling the Misconceptions	
Step Size and Accuracy			
Integration for Area		<u>Review</u>	Pg 39

Section A: Introduction

Let's quickly review last week's material.

<u>Learning Objective: [4.1.1] - Find antiderivative functions</u>

- Indefinite Integrals:
 - \bullet The indefinite integral of f(x) gives us the **Antiderivative Function**.

$$\int \frac{dy}{dx} \ dx = y + c$$

- \bullet We call dy / dx the _____ and y the _____ function.
- c is an arbitrary real constant.
- Table of Standard Integrals with Reverse Chain Rule:

f(x)	$\int f(x)dx$
$(ax+b)^n$	
$\sin(ax+b)$	
$\cos(ax+b)$	
$\sec^2(ax+b)$	
e^{ax+b}	
$\frac{1}{ax+b}$	

Learning Objective: [4.1.2] - Solve definite integrals

Definite Integrals:

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = \underline{\qquad}$$

 $lue{oldsymbol{\Theta}}$ Definite Integrals give us the ______ in the antiderivative as x changes from

Learning Objective: [4.1.3] - Apply integral properties to tackle integration questions

Integral Properties

• The following rules also hold for definite integrals:

$$\int_{b}^{a} f(x) dx = \underline{\hspace{1cm}}$$

$$\int_{a}^{a} f(x) dx = \underline{\qquad}$$

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \underline{\qquad}$$

$$\int_{a}^{b} c \cdot f(x) \, dx = \underline{\hspace{1cm}}$$

What are we learning today?

Context: Integration I Learning Objective

We will learn to approximate areas under a function.

► [4.2.1] - Approximate areas under the function

And move away from approximation to find exact areas!

There are going to be two types of exact areas: Signed and Total. We will learn together.

► [4.2.2] - Find signed and total areas

Finally, we will learn how to find areas between two functions!

▶ [4.2.3] - Find the area between two functions

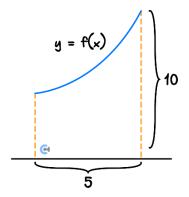
Space	tor	Personal	Notes	

Section B: Approximating the Area

Let's start with an easy example.

Approximating an Area

 \blacktriangleright Consider the area under the function f(x).



What is the area? 50, 25, excuse me?

The area under the function is not in a simple shape!

- Instead, let's fit simple shapes inside the area!
- Fit any simple shapes (rectangle, trapezium...) on the diagram above!
- How can we approximate the area using these simple shapes?
- > We can find the _______ of the ______ instead.

This is an approximation of the area!

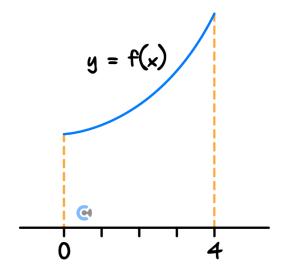
Space for Personal Notes

Sub-Section: Riemann Sum

Let's rectangles to approximate the areal

Exploration: Number of Rectangles and Step Size

Take a look at the area under y = f(x) from x = 0 to x = 4.



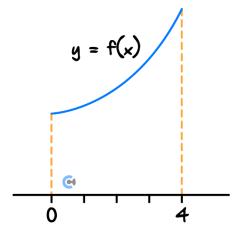
- Firstly, each rectangle needs to have the ______!
- To fit 4 rectangles, how thick should each rectangle be? [4, 1]
- ➤ There is a special mathematical term _____

NOTE: Step size is the thickness of each rectangle.

Now, how tall should these rectangles be!

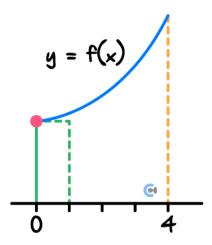
Exploration: Rectangle's Height and Left / Right End Point

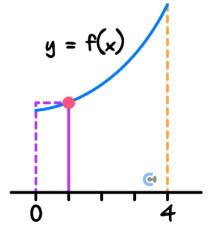
Let's approximate the area using 4 rectangles with a step size of 1.



For the first rectangle from x = 0 to x = 1, where should the height end?

[Left diagram / Right diagram]





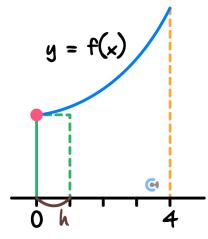
The red rectangle's height is determined by the left intersection with the function.

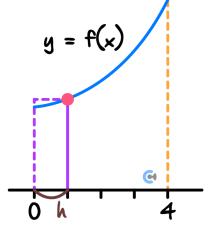
This is called the left endpoint approximation!

The blue rectangle's height is determined by the right intersection with the function.

This is called the right endpoint approximation!

Riemann Sum





- > Riemann Sum: Approximates the area under a curve using rectangles.
- **Height of the rectangles:** Determined by either the left or right *y* value of the function.
- > Step size (h): Thickness of the rectangle.

$$h = \frac{b-a}{n}$$
 where $n = number$ of rectangles

Let's try a question!

Question 1 Walkthrough.

Approximate the area under $y = \frac{1}{2}x^3$ between x = 1 and x = 3 using 2 rectangles and:

a. The right-endpoint method.

b. The left-endpoint method.

TIP: Sketch the graph to prevent mistakes.

Question 2

Approximate the area under $y = x^2 + 4$ between x = 1 and x = 5 using 4 rectangles and:

a. The right-endpoint method.

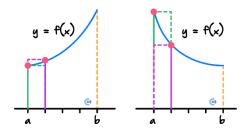
b. The left-endpoint method.

<u>Discussion:</u> For which type of functions will left end point approximation be an underestimation?

CONTOUREDUCATION

Exploration: Overestimation and Underestimation of Riemann Sum

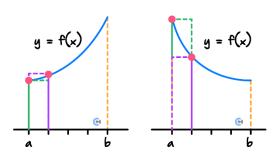
> Consider an increasing and decreasing function.



- > Visualise the left endpoint approximation.
 - Increasing function:
- Visualise the right endpoint approximation.
 - Increasing function:
 - Decreasing function: ______

Definition

Overestimation and Underestimation of Riemann Sum



- > Left endpoint approximation:
 - Increasing function: Underestimation
 - Decreasing function: Overestimation
- Right endpoint approximation:
 - Increasing function: Overestimation
 - Decreasing function: Underestimation

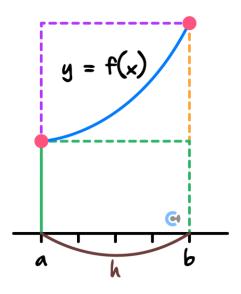
It seems like always one approximation is too big and another approximation is too small!

<u>Discussion:</u> How can we find a better estimation using both left and right endpoint approximation?

Sub-Section: Trapezoidal Approximation

Exploration: Averaging Left and Right End Point Approximation

Consider overestimating the right endpoint and underestimating the left endpoint approximation.



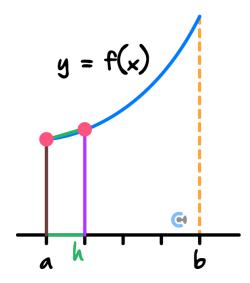
$$Left = f(a) h$$

$$Right = f(b) h$$

- If we take the average of the two areas, what shape would the resulting area represent?
- Sketch the shape above!
- Let's calculate the average area!

What does this remind you of? Area of the [trapezium, rectangle, triangle]

Trapezoidal Approximation



- Trapezoidal Approximations: Approximates the area under a curve using trapeziums.
- Formula for each trapezium: Approximates the area under a curve using trapeziums.

$$Area = \frac{h}{2} (f(a) + f(a+h))$$

Step size (h): Thickness of the trapezium.

$$h = \frac{b-a}{n}$$
 where $n = number$ of rectangles

Formula: Sum of all the trapeziums

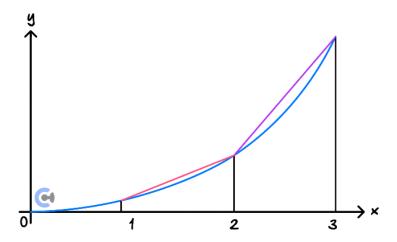
$$Approximation = \frac{b-a}{2n}(f(a) + 2f(a+h) + 2f(a+2h) \cdots + f(b))$$

$$VCAA\ Version = \frac{x_n - x_0}{2n}(f(x_0) + 2f(x_1) + 2f(x_2) \cdots + f(x_n))$$

NOTE: Formula is on the VCAA formula sheet.

Question 3 Walkthrough.

Approximate the area under $y = x^2$ between x = 1 to x = 3 using the trapezoidal method and the step size of 1.



Your turn!

Question 4

Consider the area under $y = x^3$ between x = 0 to x = 3.

a. Approximate the area using the trapezoidal method and the step size of 1.

It is known that the left end point approximation with the step size of 1 for the same region is given by 9.

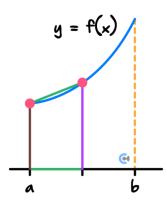
b. Without calculating, state the right endpoint approximation with the step size of 1 for the same region as part.

<u>Discussion:</u> For which type of functions will the trapezoidal approximation be an Underestimation?

CONTOUREDUCATION

Exploration: Overestimation and Underestimation of the Trapezoidal Approximation

> Consider concave up and down functions.

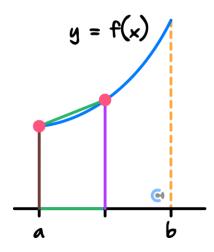


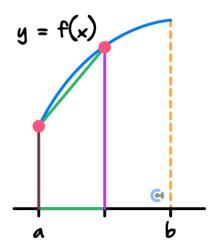
> Visualise the trapezoidal approximation on the graphs above.

© Concave Up: ______

Concave Down:

Overestimation and Underestimation of Trapezoidal Approximation





Trapezoidal approximation:

Concave Up: Overestimation

G Concave Down: Underestimation

Section C: Finding the Exact Area

Sub-Section: Step Size and Accuracy

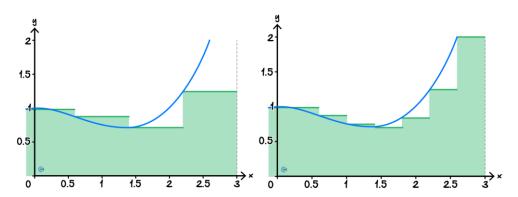
<u>Discussion:</u> How can we increase the accuracy of estimation by changing the step size?

Exploration: Step Size and Accuracy Visualisation

Scan the QR code below!

- To achieve higher accuracy (less error), do we want more rectangles or less?
- Therefore, to fit more rectangles, should our step size (thickness) be smaller or bigger?

Step Size and Accuracy



- > Step size: Dictates how accurate the estimation is.
- Smaller step size results in higher accuracy.

<u>Discussion:</u> How small should the step size be to achieve 100% accuracy?

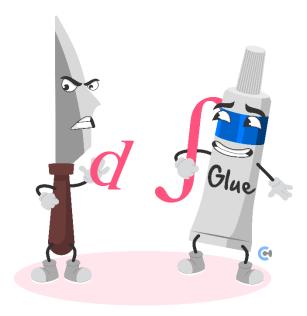
How can we cut the area into rectangles with a thickness of 0? Rectangles that are infinitely small?

Sub-Section: Integration for Area

We can use calculus!

Context: Calculus

Calculus is a study of infinitely small things, originally called "the calculus of infinitesimals".

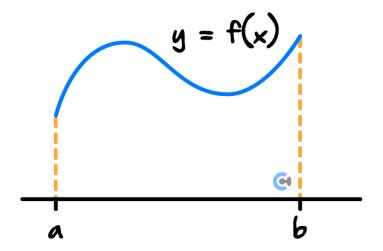


- Differential calculus allows us to______ something into infinitely small thing.
- ▶ Integral calculus allows us to ______ infinitely small things to something whole.

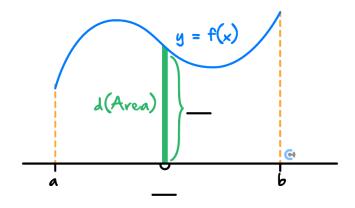
Let's use differentiation and integration for finding the exact area!

Exploration: Calculus for Finding the Exact Area

Consider the area below the function f(x).



- Let's cut the area into rectangles, but this time, rectangles will be _______.
- > Draw the infinitely thin rectangles above!
- We are differentiating the area!
- \blacktriangleright Let's define the small cut of the area: d(Area)!

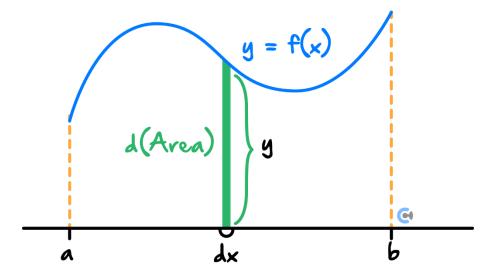


$$d(Area) =$$

How do we find the sum of all d(Area)s from x = a to x = b?

This is how we find the area under a function!

Calculus for Finding Exact Area



Differentiation: Defines a small cut of the total area.

$$d(Area) = y dx = f(x) dx$$

Integration: Adds all the small cuts of areas into the entire area.

$$Area = \int_{a}^{b} y \, dx = \int_{a}^{b} f(x) \, dx$$

NOTE: We use a definite integral to define where to start and stop the sum (area).

Question 5 Walkthrough.

Find the area bounded under $y = x^2 + 5$ from x = 1 to x = 2.

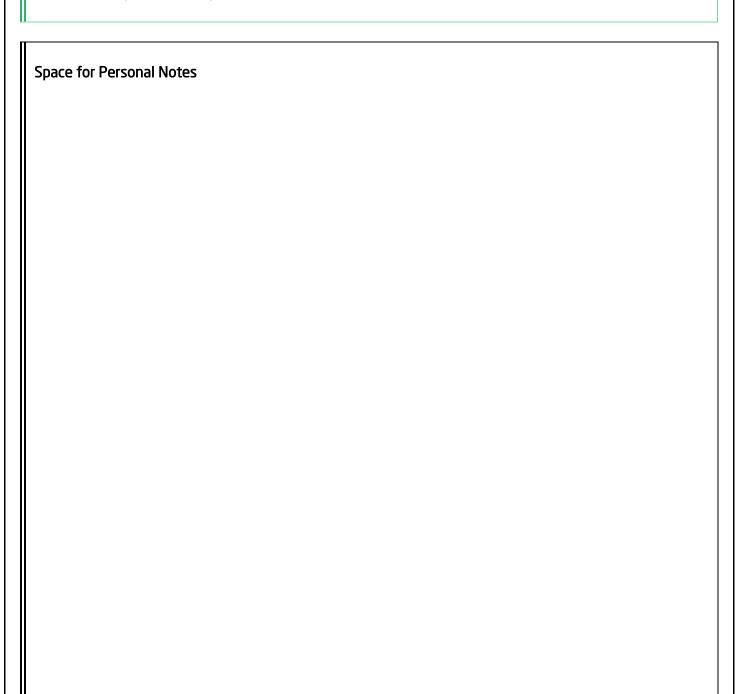
TIP: Always visualise the area first!

Question 6

Find the area bounded under $y = e^x + 1$ from x = 1 to x = 3.

<u>Discussion:</u> Try explaining why the integral of the circumference equals the area to the next person!

(Extension) How about volume and surface area of a sphere?



Section D: Signed vs Total Areas

Sub-Section: Signed Area

We are adding y dx to find the exact area.

<u>Discussion:</u> What would happen if the *y*-value is negative?

We call $\int_a^b y \, dx$ signed area!

Exploration: Signed Area

ightharpoonup Consider the function $y = \sin(x)$.



- \rightarrow y-values are positive and negative for $x \in [0, 2\pi]$.
- For which x-values will our signed area be positive?
- For which x-values will our signed area be negative?
- Evaluate the following integral:

$$\int_0^{2\pi} \sin(x) \, dx = \underline{\hspace{1cm}}$$

Why is the overall signed area 0?

It is because the _____ and _____ signed area _____.

NOTE: Signed areas cancel out when we use one integral!

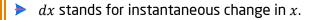
Signed Area

Signed Area =
$$\int_{a}^{b} y \, dx$$

- **Signed Area**: Areas with signs due to the sign of the *y*-value of the function.
- Positive Signed Area: y > 0
- Negative Signed Area: y < 0
- Positive and negative areas will cancel out.

NOTE: Area below the x-axis = Negative is a dangerous way of thinking! More on this later.

Extension: Sign of dx



$$\int_2^5 y \, dx$$

- For the above integral, dx would be positive as the x-value is increasing.
- How about this one?

$$\int_{5}^{2} y \, dx$$

- \rightarrow dx would be negative as the x-value is decreasing.
- This is why we always define the area from left to right.

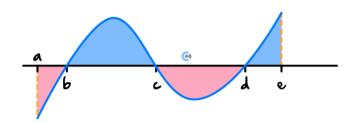
So,	is always
July	15 dividy5

Sub-Section: Total Area

Do we want a negative area though? [Yes/No]

Exploration: Finding Total Area

Consider the function below.



We want to find the total positive area: a total area for short!

- What happens when we use one integral? Discuss!
- The positive and negative areas will ______!

$$\int_{a}^{e} y \, dx$$

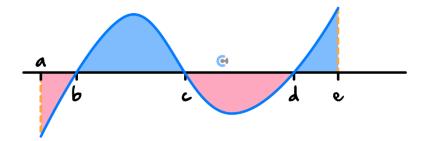
What about this? Discuss!

$$\int_a^b y \, dx + \int_b^c y \, dx + \int_c^d y \, dx + \int_d^e y \, dx$$

- We are adding _____ and ____ values.
- It is actually the same as ______!
- ► How can we fix the issues we face?
- Write down the integral(s) that finds the total area below!

Total Area = _____

Total Area



- Total Area: Total _____ area.
- ➤ Require ______ integrals for areas with ______ y-value.

Total Area =
$$-\int_{a}^{b} y dx + \int_{b}^{c} y dx - \int_{c}^{d} y dx + \int_{d}^{e} y dx$$

- > Steps:
 - 1. _____ the integrals for _____ and _____ y-values.
 - 2. Turn the negative signed areas to positive by putting a _____ in front!

<u>Discussion:</u> IMPORTANT! If a question asks for area, how do we know when to find signed vs total a

<u>Discussion:</u> There is one way in specialist maths to find the total area using one integral. How? Hint: Think about why we need to split the integrals in the first place!

Question	7	Walkthrough.
Question	,	waikun dugn.

Find the total area bounded by $y = 12 - 3x^2$ from x = 1 to x = 3.

TIP: Always sketch the graph of the function.

Question	8
Oucsuon	o

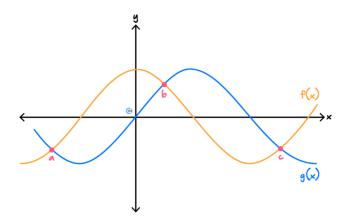
Let $f(x) = x^2 - 4$. Find the area bounded by the graph of y = f(x), the x-axis, the lines x = 0 and x = 4.

 $\underline{\text{Discussion:}} \ \textbf{Explain to each other the difference between signed and total area!}$

Section E: Area Between Two Functions

Sub-Section: Area Between Two Functions

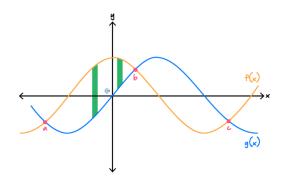
<u>Discussion:</u> How many integrals are required to find the area bounded by f(x) and g(x) from x = a to c?



Is it 2 or 4 integrals? Let's find out!

Exploration: Area between two functions.

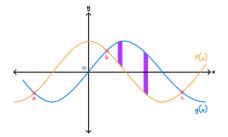
Consider the total area bounded between f(x) and g(x) from x = a to c.



- Using the idea of calculus, we can cut the area into infinitely thin rectangles!
- How can we define the areas of infinitely thin rectangles from x = a to x = b? (Positively)

Area of the thin rectangle = _____

Do we need multiple different ways to defining the area from x = a to x = b? [Yes / No] Hence, how many integrals do we need from x = a to x = b? [0, 1, 2]



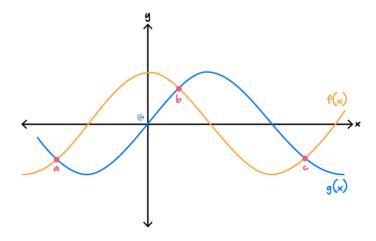
How can we define the areas of infinitely thin rectangles from x = b to x = c? (Positively)

Area of the thin rectangle =

- Hence, how many integrals do we need from x = b to x = c? [0, 1, 2]
- Therefore, how can we find the total area bounded between f(x) and g(x) from x = a to c.

Total Area = ____

Area Between Two Functions



Area between two functions:

Integrand (inside the integral) is the top function minus the bottom function.

$$Area = \int_a^b f(x) - g(x) dx + \int_b^c g(x) - f(x) dx$$

Question 9 Walkthrough.

Find the area enclosed by the curves x^2 and 3x.

ue

TIP: Always sketch the function.

Question 10

Find the area enclosed by the curves $x^2 - 4x + 3$ and y = x - 1.

Sub-Section: Tackling the Misconceptions

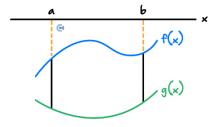
REMINDER: Integral Calculus

<u>Discussion:</u> What makes an integral (overall sum) negative then? What do you have to sum up?

Okay then.. have a go at the following discussion!

<u>Discussion:</u> How do we define the integral for the area between f(x) and g(x) from x = a to b below?

NOTE: We want positive area.



NOTE: The sign of what you are integrating defines whether the integral is positive or negative.

Hence, "Integrals for areas below the x-axis are always negative." True or false?

Misconception

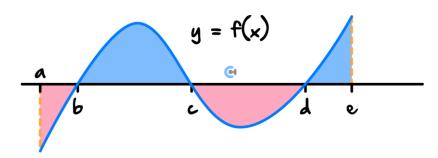
Integrals for areas below the x-axis are always negative.

TRUTH: Integral is negative when we sum up negative values.

Top minus bottom is all we have to do, for every total area!

Exploration: Top minus bottom for total area

Consider the function below.



We can find the total area using the top minus bottom function approach here!

State the function that models the *x*-axis.

$$x$$
-axis: $y =$ _____

Use the top minus bottom approach to define the area!

Total Area = _____

What does it simplify to?

Total Area = ____

NOTE: We were technically doing the top minus bottom function before for the total area!

Question 11

Find the area enclosed by the curves $-x^2$ and -4x.

NOTE: Always only focus on the top minus bottom function.

Section F: Review

What did we learn today?

Summarise and teach everything we have learnt to your friend next to you!

Discussion: What did we learn in Section B: Approximating the area?

Discussion: What did we learn in Section C: Finding the exact area?

<u>Discussion</u>: What did we learn in <u>Section D: Signed vs Total Area?</u>

<u>Discussion</u>: What did we learn in <u>Section E: Finding the area between two functions?</u>

NOTE: Homework has interesting problem-solving questions! So, make sure to try them!

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

