

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Integration I [4.2] Test

24 Marks. 1 Minute Reading. 19 Minutes Writing.

Results:

Test Questions	/18
Extension Test Questions	/6

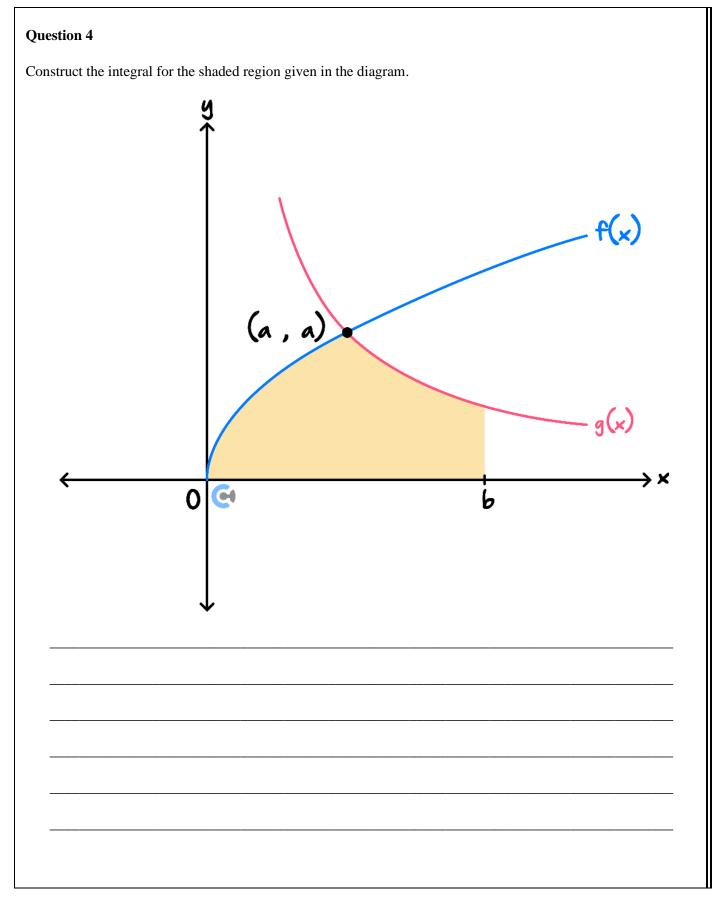
Section A: Test Questions (18 Marks)

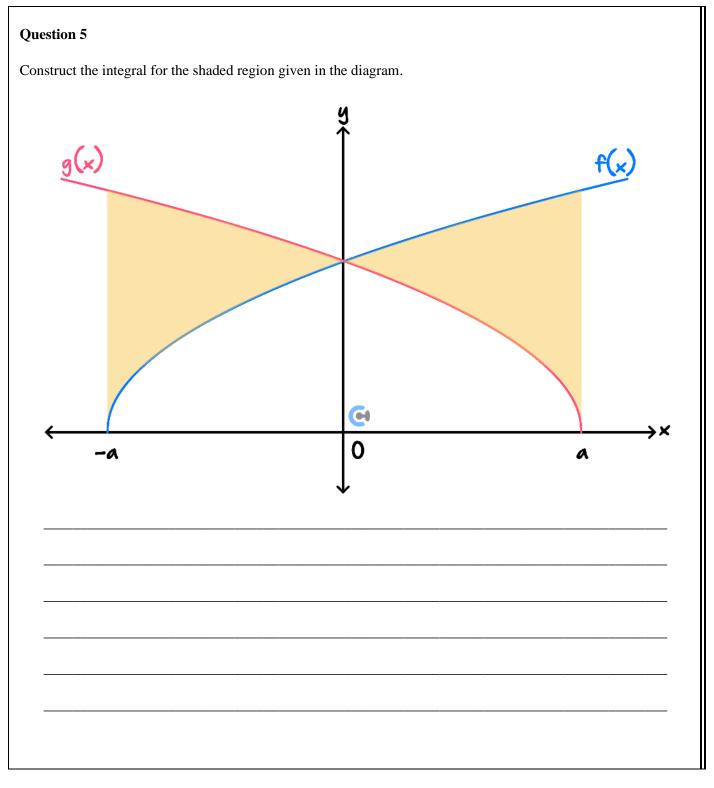
On	estion	1	(3	marks	١
Vu	CSLIUII		v	mans	ı

Tick whether the following statements are **true** or **false**.

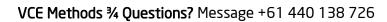
	Statement	True	False
a.	When the function is increasing, the right-endpoint approximation will always be an underestimation.		
b.	Trapezoidal approximation is always the average of left and right-endpoint approximation.		
c.	When the question says "find the area", it can be signed or total area.		
d.	Signed area is always positive and represents the change of the antidiff. function.		
e.	When finding the total area (without using modulus), we solve for areas above and below the x -axis separately.		
f.	If the two functions are both below the <i>x</i> -axis, we do Bottom–Top to find the area between them.		

Space	for	Personal	Notes
Space	101	i Ci Soriai	140103


Question 2 (6 marks) **a.** Approximate the area under $y = x^3$ between x = 1 to x = 5 using the right-endpoint method. Use step size of 2. (2 marks) **b.** Approximate the area under $y = x^3$ between x = 1 to x = 5 using the trapezoidal method. Use a step size of 2. (2 marks) **c.** Determine which answers out of **part a.** and **b.** were more accurate overall. State whether the approximation was underestimation or overestimation. (2 marks)

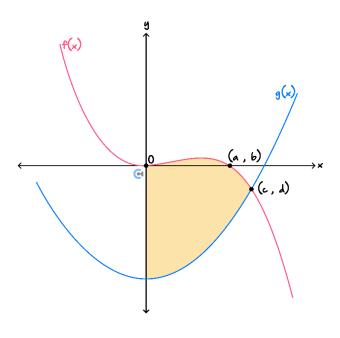

VCE Methods ¾ Questions? Message +61 440 138 726

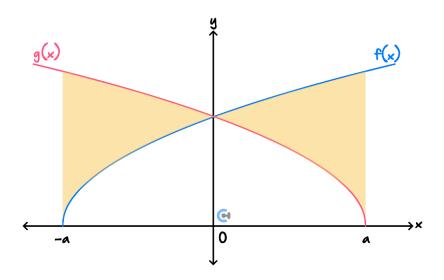
Question	3 (2 marks)				
Let $f(x) = (2x - 1)^3$. Find the signed area under the function $f(x)$ from $x = 0$ to $x = 2$.					
, ()	, , , , , , , , , , , , , , , , , , ,	, ,			
pace fo	r Personal Notes				



Space for Personal Notes

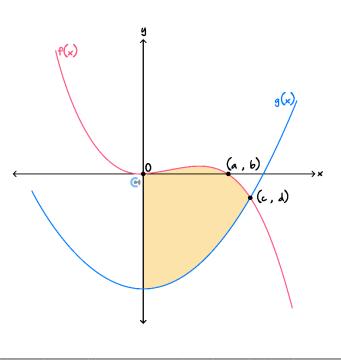
		y = f(x), the x-ax	
ace for Personal Notes			


)ues	stion 7 (3 marks)	
ind	the area enclosed by the following two curves $-x^2 + 4$ and $-3x$.	
_		
_		
_		
_		
-		
-		
_	43	
_		
_		
_		
-		
_		
pad	te for Personal Notes	
•		

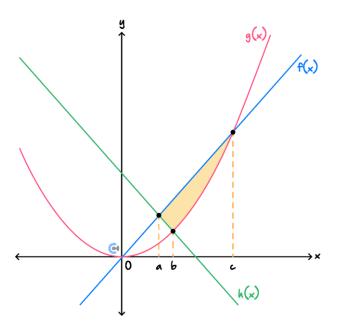

Question 8

Construct the integral in the most simplified way possible for the shaded region given in the diagram.

a.



b.



c.

d.

Section B: Extension Test Questions (6 Marks)

Question 9 (3 marks)

Let $f: [3, \infty) \to f(x) = x^3 - 3x^2 - 9x + 5$.

Find the area bounded by $y = f^{-1}(x)$, y = 6, y = 8 and the y-axis.

Space for Personal Notes

VCE Methods ¾ Questions? Message +61 440 138 726

Question 10 (3 marks) Tech-Active.		
Let $f(x) = e^x - 2$.		
Find the area bounded by $y = f(x)$ and $y = f^{-1}(x)$.		

Space for Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.lv/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

