

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Integration I [4.2]

Homework Solutions

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2 - Pg 22
Supplementary Questions	Pg 23 - Pg 36

Section A: Compulsory Questions

Sub-Section: Basics

Question 1

Consider the function $f(x) = x^2 + 1$.

a. Approximate the area under the curve y = f(x) from x = 0 to x = 2 using two rectangles of equal width with left endpoints.

$$\Delta x = \frac{2-0}{2} = 1$$

$$f(0) = 0^2 + 1 = 1 \text{ and } f(1) = 1^2 + 1 = 2$$

$$A = 1 \times (1+2) \text{ 1M}$$

$$= 3 \text{ 1A}$$

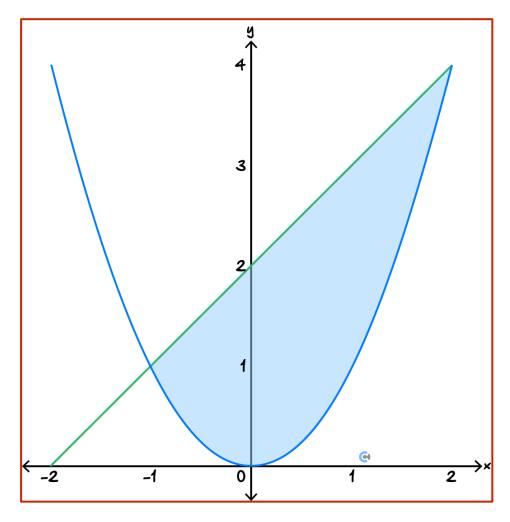
b. Is this approximation an overestimate or an underestimate of the true area? Explain briefly.

Since $f(x) = x^2 + 1$ is increasing on [0,2] **1M** the left-endpoint method underestimates the area. **1A**

Find the area bounded by the curve $y = 1 - x^2$ and the *x*-axis.

$$\begin{array}{rcl}
1 - x^2 & = & 0 \Rightarrow x^2 = 1 \Rightarrow x = -1, 1. \\
\int_{-1}^{1} (1 - x^2) dx & \mathbf{1M} = & \left[x - \frac{x^3}{3} \right]_{-1}^{1} \mathbf{1M} \\
& = & \left(1 - \frac{1}{3} \right) - \left((-1) - \left(-\frac{1}{3} \right) \right) \\
& = & \left(1 - \frac{1}{3} \right) - \left(-1 + \frac{1}{3} \right) \\
& = & \frac{2}{3} - \left(-\frac{2}{3} \right) \\
& = & \frac{4}{3} \cdot \mathbf{1A}
\end{array}$$

Find the area enclosed between the curve y = x + 2 and $y = x^2$.



$$x + 2 = x^{2} \Rightarrow x^{2} - x - 2 = 0 \Rightarrow (x - 2)(x + 1) = 0,$$

$$x = -1, 2. \quad \mathbf{1M}$$

$$\int_{-1}^{2} [(x + 2) - x^{2}] dx \quad \mathbf{1M} = \begin{bmatrix} \frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} \end{bmatrix}_{-1}^{2} \mathbf{1M}$$

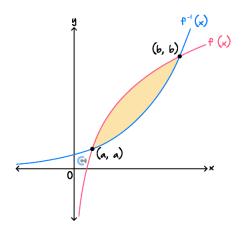
$$At x = 2: \qquad \frac{2^{2}}{2} + 2(2) - \frac{2^{3}}{3} = 2 + 4 - \frac{8}{3} = \frac{10}{3},$$

$$At x = -1: \qquad \frac{(-1)^{2}}{2} + 2(-1) - \frac{(-1)^{3}}{3} = \frac{1}{2} - 2 + \frac{1}{3} = -\frac{7}{6},$$
Difference:
$$\frac{10}{3} - (-\frac{7}{6}) = \frac{10}{3} + \frac{7}{6} = \frac{27}{6} = \frac{9}{2}. \mathbf{1A}$$

Sub-Section: Problem Solving

Question 4

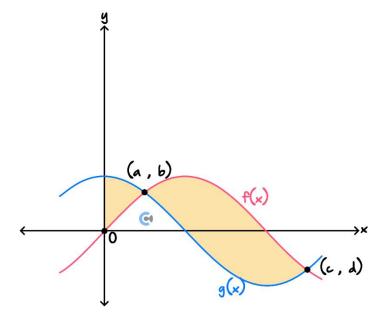
Construct the integral for the shaded region given in the diagram.



$$\frac{2\int_{a}^{b} x - f^{-1}(x) dx}{2\int_{a}^{b} f(x) - x dx}$$

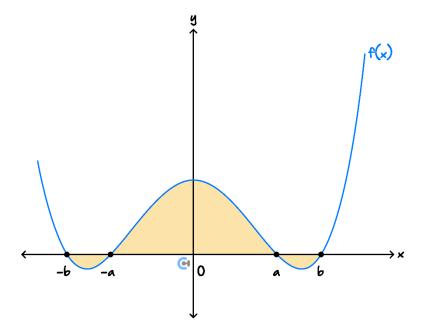
$$= \int_{a}^{b} f(x) - f^{-1}(x) dx$$

Construct the integral for the shaded region given in the diagram.



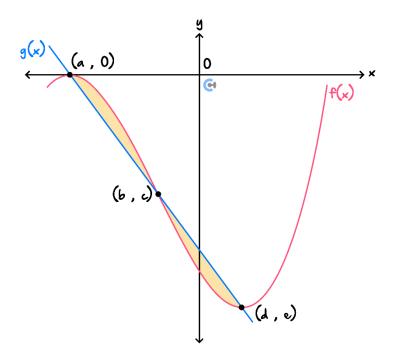
) g(x)-f(x) dx + s (x)-g(x) dx	
) f(x)-g(z) dx	

Construct the integral for the shaded region given in the diagram.



	1
$2\left(\int_{0}^{a}f(x)dx-\int_{0}^{b}f(x)dx\right)$	
2 () +(2) a2) (())	
$\begin{cases} C(x) dx - (f(x)) dx \end{cases}$	
$\int_{-a}^{a} f(x) dx - \int_{-a}^{b} f(x) dx$ $- \int_{-a}^{a} f(x) dx$	
- f(x)dx	
-b	

Construct the integral for the shaded region given in the diagram.

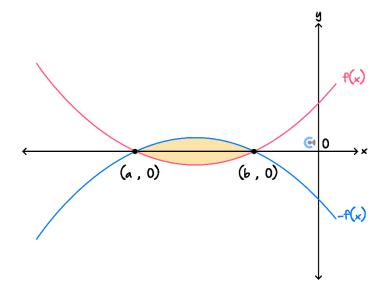


$$2 \int_{a}^{b} f(x) - g(x) dx$$

$$a \int_{a}^{b} f(x) - g(x) dx + \int_{a}^{d} g(x) - f(x) dx$$

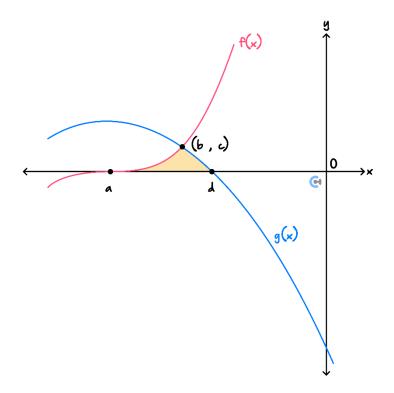
$$a \int_{a}^{b} f(x) - g(x) dx + \int_{b}^{d} g(x) - f(x) dx$$

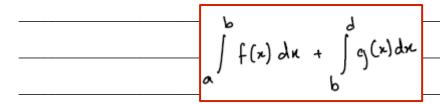
Construct the integral for the shaded region given in the diagram.



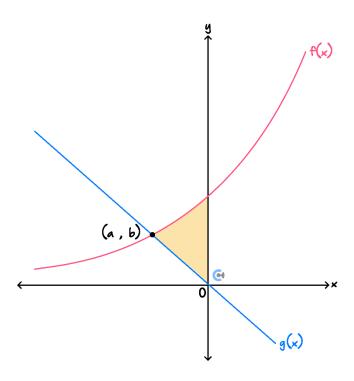
 ,b	
$2\int f(x) dx$	
a'	

Construct the integral for the shaded region given in the diagram.



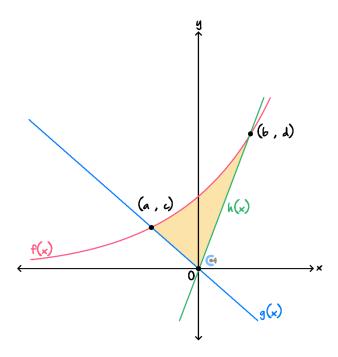


Construct the integral for the shaded region given in the diagram.



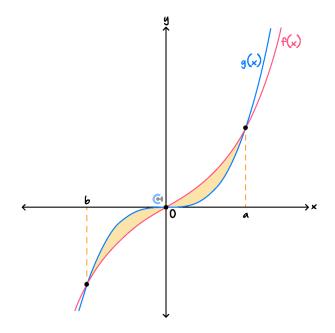
o f(x)-g(x)dn

Construct the integral for the shaded region given in the diagram.



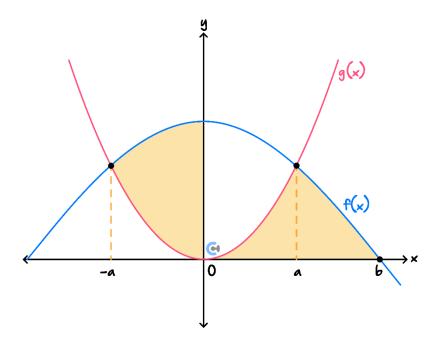
$$\int_{a}^{0} (f(x) - g(x)) \ dx + \int_{0}^{b} (f(x) - h(x)) \ dx$$

Construct the integral for the shaded region given in the diagram.



2 f(x)-g(x) dx
b [g(x)-f(n) dx
1 Sf(x)-g(x) dx

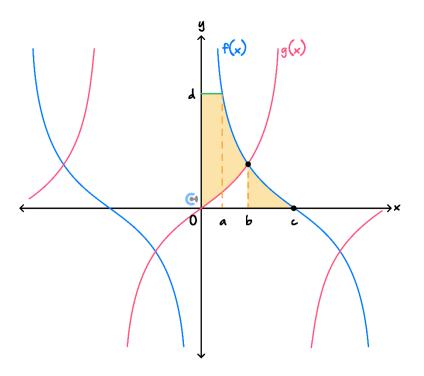
Construct the integral for the shaded region given in the diagram.



$$-a \int_{0}^{0} f(x) - g(x) dx$$

$$+ \int_{0}^{1} g(x) dx + \int_{0}^{1} f(x) dx$$

Construct the integral for the shaded region given in the diagram.



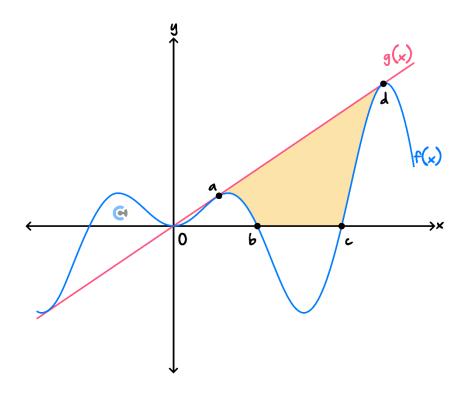
$$\int_{0}^{a} d^{2} dx + \int_{0}^{b} f(n) - g(n) dx$$

$$\int_{0}^{c} d^{2} dx + \int_{0}^{c} f(n) dx$$

$$\int_{0}^{c} d^{2} dx + \int_{0}^{c} f(n) dx - \int_{0}^{c} g(n) dx$$

$$\int_{0}^{a} d^{2} dx + \int_{0}^{c} f(n) dn - \int_{0}^{c} g(n) dx$$

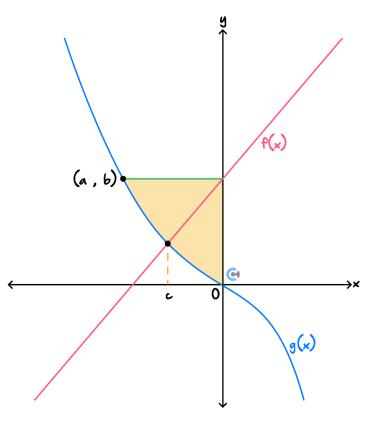
Construct the integral for the shaded region given in the diagram.



 $\int_{a}^{d} \int_{g(x)}^{g(x)} dx - \int_{a}^{b} \int_{a}^{f(x)} dx$

a /g(n) - f(n) dn i /g(n) - f(x) dn i / g(n) dx

Construct the integral for the shaded region given in the diagram.



 0	
16-g(x) dx	
a y	

Given that $\int_a^c f(x) dx = 10$ and the total area between x = a and x = b is 16 with $f(x) \ge 0$ on [a, b] and a < b < c, find $\int_b^c f(x) dx$.

$$\int_{a}^{c} f(x)dx = 10, \int_{a}^{b} f(x)dx = 16,$$

$$\int_{b}^{c} f(x)dx = 10 - 16 \text{ 1M} = -6 \text{ 1A}$$

Question 18

Let f(x) be a function such that $\int_0^4 f(x) dx = 5$ and the total area bounded by the graph of y = f(x) and the x-axis on [0,4] is 13. The function f(x) crosses the x-axis exactly once in (0,4) at x = k, with $f(x) \le 0$ on [0,k] and $f(x) \ge 0$ on [k,4].

a. Write two equations that relate $A = \int_0^k f(x) dx$ and $B = \int_k^4 f(x) dx$.

A + B = 5,-A + B = 13.

1A each equation.

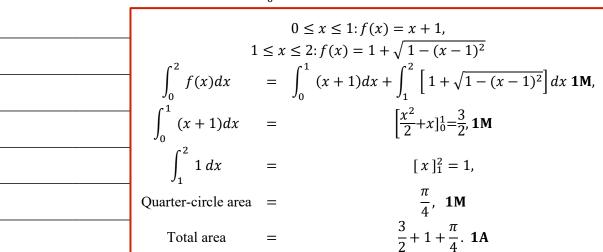
b. Hence, find the value of $\int_0^k f(x) dx$.

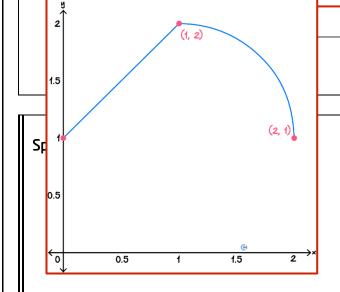
$$(-A + B) - (A + B) = 13 - 5, \text{ 1M}$$

$$-2A = 8,$$

$$A = -4. \text{ 1A}$$

The graph of y = f(x) consists of a straight-line segment from (0,1) to (1,2) and a quarter circle of radius 1 centred at (1,1) connecting (1,2) to (2,1). Evaluate $\int_0^2 f(x) dx$.





Consider the function f(x) = x + 1 on [0, 2] using 2 equal subintervals.

a. Find the left endpoint approximation L.

$$\Delta x = \frac{2-0}{2} = 1,$$

$$x_0 = 0, x_1 = 1,$$

$$L = 1[f(0) + f(1)] = 1[(0+1) + (1+1)] \mathbf{1M} = 1[1+2] = 3 \mathbf{1A}.$$

b. Find the trapezoidal rule approximation T.

$$T = \frac{1}{2} [f(0) + 2f(1) + f(2)],$$

$$f(0) = 0 + 1 = 1,$$

$$f(1) = 1 + 1 = 2,$$

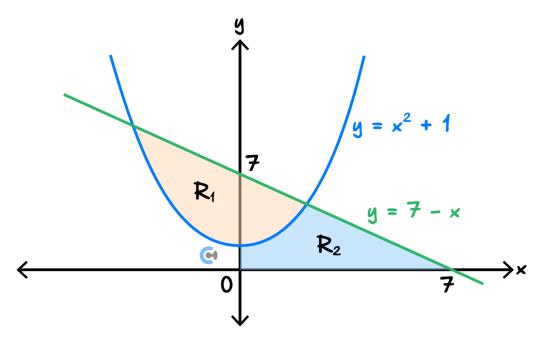
$$f(2) = 2 + 1 = 3,$$

$$T = \frac{1}{2} [1 + 2(2) + 3] \mathbf{1M} = \frac{1}{2} [1 + 4 + 3] = \frac{8}{2} = 4 \mathbf{1A}.$$

c. Hence, determine the right endpoint approximation R.

$$T = \frac{L+R}{2},$$
 $R = 2T-L = 2(4) - 3$ **1M** $= 8 - 3 = 5$ **1A**.

The diagram shows the curve $y = x^2 + 1$ and the line y = 7 - x. These graphs enclose two finite regions. Region R_1 is bounded by the curve and the line. Region R_2 lies below both graphs and is also bounded by the positive x and y-axes.



a. Find the area of R_1 .

	1
$x^2 + 1 = 7 - x$	
 $x^2 + x - 6 = 0$	
x = -3, 2 1M	
$\int_{-3}^{2} \left[(7 - x) - (x^2 + 1) \right] dx \mathbf{1M}$	
 <u> </u>	
$= \int_{-3}^{2} (6 - x - x^2) dx$	
 x^2 x^3	
$= \left[6x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-3}^2 \mathbf{1M}$	
 $= (6(2) - \frac{(2)^2}{2} - \frac{(2)^3}{3}) - (6(-3) - \frac{(-3)^2}{2} - \frac{(-3)^3}{3})$ $= \left(12 - 2 - \frac{8}{3}\right) - \left(-18 - \frac{9}{2} + \frac{-27}{-3}\right)$	
 (8) (9 –27)	
$=\left(12-2-\frac{3}{3}\right)-\left(-18-\frac{3}{2}+\frac{27}{-3}\right)$	
 _ 22	
$= \frac{22}{3} - (-\frac{27}{2})$ [125]	
 125	
$\begin{bmatrix} \frac{3}{6} & 1A \end{bmatrix}$	

b. Find the area of R_2 .

$$\int_0^2 (x^2 + 1) dx + \int_2^7 (7 - x) dx \, \mathbf{1M}$$

$$\int_0^2 (x^2 + 1) dx = \left[\frac{x^3}{3} + x\right]_0^2 = \left(\frac{8}{3} + 2\right) - 0 = \frac{14}{3} \, \mathbf{1M}$$

$$\int_0^7 (7 - x) dx = \left[7x - \frac{x^2}{2}\right]_2^7$$

$$= (7 \times 7 - \frac{49}{2}) - (7 \times 2 - \frac{4}{2}) = (49 - \frac{49}{2}) - (14 - 2) = \frac{49}{2} - 12 = \frac{25}{2} \, \mathbf{1M} \text{ (or use area of triangle)}$$

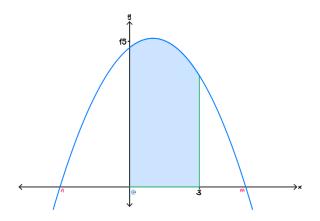
$$\frac{14}{3} + \frac{25}{2} = \frac{28}{6} + \frac{75}{6} = \frac{103}{6} \, \mathbf{1A}$$

Section B: Supplementary Questions (47 Marks)

Sub-Section: Exam 1

Question 22 (5 marks)

Part of the graph of $f : \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + ax + 15$ is shown below. If the shaded area is 45 square units, find the values of a, m and n where m and n are the x-axis intercepts of the graph of y = f(x).



We have that $\int_0^3 (-x^2 + ax + 15) dx = 45$. (1M).

$$\left[\left(-\frac{x^3}{3} \right) + \left(\frac{1}{2} \right) x^2 + 15x \right]_0^3 = 45 \text{ (1M)}$$

$$(-9 + \frac{9}{2} a + 45) - 0 = 45$$

$$a = 2 \text{ (1A)}$$

So $f(x) = -x^2 + 2x + 15$.

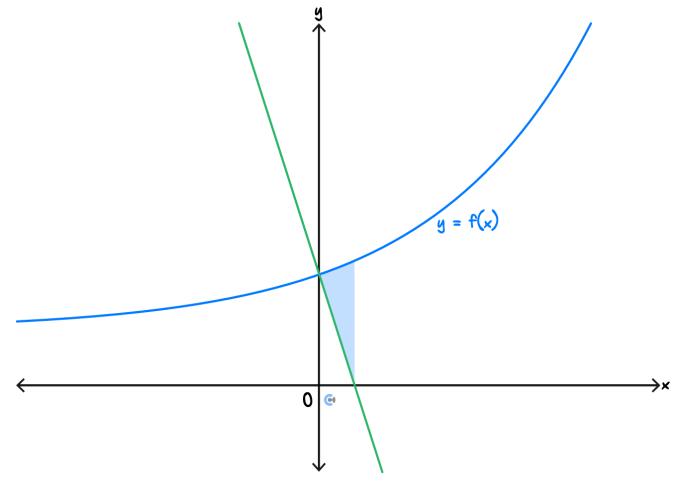
Solve
$$f(x) = 0 \Rightarrow x^2 - 2x - 15 = 0 \Rightarrow (x - 5)(x + 3) = 0.$$

 $x = -3, 5.$

Thus n = -3 and m = 5. (1A each)

Question 23 (5 marks)

The graph of $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{\frac{x}{3}} + 1$ is shown. The normal to the graph of f where it crosses the y-axis is also shown.



a. Find the equation of the **normal** to the graph of f where it crosses the y-axis. (2 marks)

 $f'(x) = \left(\frac{1}{3}\right)e^{\frac{x}{3}}$. So $f'(0) = \frac{1}{3}$. (1M)

Then gradient of normal must be -3. Line with gradient -3 that passes through (0, 2). Normal is y = 2 - 3x. (1A)

b. Find the exact area of the shaded region. (3 marks)

Normal has x-intercept when $x = \frac{2}{3}$. We have: $\int_0^{\frac{2}{3}} f(x)dx = \left[3e^{\frac{x}{3}} + x^{\frac{2}{3}}\right]_0^{\frac{2}{3}}$

$$= 3e^{\frac{2}{9}} + \frac{2}{3} - (3)$$
$$= 3e^{\frac{2}{9}} - \frac{7}{3} \cdot (1M)$$

Area unshaded triangle = $\frac{1}{2} \times \frac{2}{3} \times 2 = \frac{2}{3}$. (1M)

Therefore, shaded area is $3e^{\frac{2}{9}} - \frac{7}{3} - \frac{2}{3} = 3e^{\frac{2}{9}} - 3$. (1A)

Question 24 (3 marks)

The area of the region bounded by the curve with equation $y = k\sqrt{x}$, where k is a positive constant, the x-axis and the line with equation x = 9 is 54. Find k.

We require that $\int_0^9 k\sqrt{x} \ dx = 54$ (1M).

$$k \left[\left(\frac{2}{3} \right) x^{\frac{3}{2}} \right]_{0}^{9} = 54 \text{ (1M)}$$

$$k \times \frac{2}{3} \times 27 = 54$$

$$\frac{2}{3} \times k = 2$$

$$k = 3 \text{ (1A)}$$

Question 25 (3 marks)

The area of the region bounded by the y-axis, the x-axis, the curve $y=e^{3x}$ and the line x=c, where c is a positive real constant is $\frac{8}{3}$. Find c.

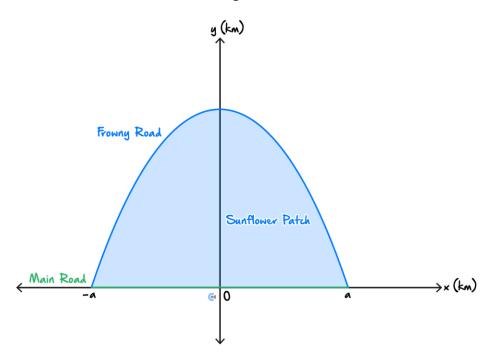
We have that $\int_0^c e^{3x} dx = \frac{8}{3}$. (1M) $\frac{1}{3} \left[e^{3x} \right]_0^3 = \frac{8}{3} (1M)$ $e^{3c} - 1 = 8$ $3c = \log_e(9)$ $c = \left(\frac{1}{3}\right) \log_e(9)$. (1A)

Sub-Section: Exam 2

Question 26 (8 marks)

Juliette's sunflower patch lies between two roads. Main Road lies along the x-axis and Frowny Road lies along the graph of the function:

$$y = 4 - \frac{4}{3} \left(e^x + e^{-x} \right)$$

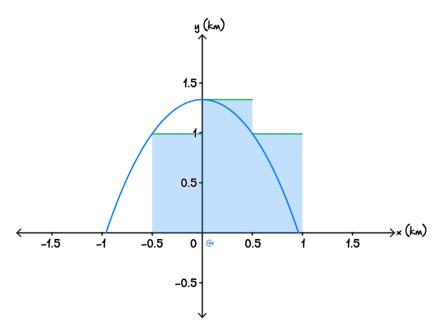


a. Show that the y-axis intercept of the curve representing Frowny Road is $\left(0, \frac{4}{3}\right)$. (1 mark)

When x = 0 we have $y = 4 - \frac{4}{3}(1 + 1) = \frac{12}{3} - \frac{8}{3} = \frac{4}{3}$. (1M) Therefore y-axis intercept is $\left(0, \frac{4}{3}\right)$

b. Find the exact value of a such that the sunflower patch lies between x = -a and x = a. (1 mark)

We solve $f(x) = 4 - \frac{4}{3}(e^x + e^{-x}) = 0$. We get $x = \log_e\left(\frac{(3 \pm \sqrt{5})}{2}\right)$. Since a > 0, we have $a = \log_e\left(\frac{(3 + \sqrt{5})}{2}\right)$. **c.** Juliette wants to estimate the area of the sunflower patch. She uses a rectangle method with a width of $0.5 \, km$ and three rectangles between x = -1 and x = 1.



i. Complete the table of values for $y = 4 - \frac{4}{3}(e^x - e^{-x})$, correct to two decimal places. (1 mark)

	х	-0.5	0	0.5	5
	y	0.99	1.33	0.99	
l L					

ii. Use the table to estimate the area of the patch in square kilometres, correct to one decimal place. (1 mark)

 $0.5 \times (0.99 + 1.33 + 0.99) = 1.66 \approx 1.7 \,(1A)$

iii. If she expects to harvest w kg of sunflowers per square kilometre and she can sell them for m per kilogram, write a formula for her expected revenue R. (Use your answer from the previous part.) (1 mark)

 $R = 1.7 \times w \times m \, (1A)$

- **d.** Juliette decides to try another approximation method by fitting a parabola through three known points: (-1,0), $\left(0,\frac{4}{3}\right)$ and (1,0). She then estimates the area under this parabola.
 - i. Find the equation of the parabola that fits these three points. (1 mark)

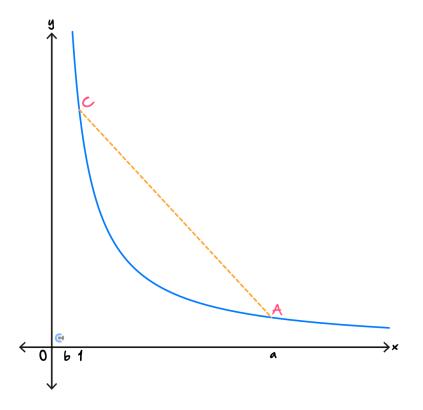
y = a(x - 1)(x + 1). Then we get $y = -\frac{4}{3}(x - 1)(x + 1)$. (1A)

ii. Find the area enclosed by the parabola and the x-axis, giving your answer correct to two decimal places. (2 marks)

Area = $\int_{-1}^{1} -\frac{4}{3}(x - 1)(x + 1) dx$ (1M) Area = $\frac{16}{9} \approx 1.78$. (1A)

Question 27 (12 marks)

The diagram below shows part of the graph of the function $f: \mathbb{R}^+ \to \mathbb{R}$, where $f(x) = \frac{8}{x}$. The line segment CA is drawn from the point C(1, f(1)) to the point A(a, f(a)), where a > 1.



a.

i. Calculate the gradient of CA in terms of a. (1 mark)

C is at (1,8).
8 8 0
Gradient = $\frac{a}{a} = -\frac{8}{4}$. (1A)
$\frac{1}{a-1} = \frac{1}{a} \cdot \frac{1}{a}$

ii. At what value of x between 1 and a does the tangent to the graph of f have the same gradient as CA? (2 marks)

$$f'(x) = -\frac{8}{x^2}. (1M)$$
We solve $-\frac{8}{x^2} = -8 \Rightarrow x = \pm \sqrt{a}$.
But $x > 1$, so $x = \sqrt{a}$. (1A)

b.

i. Calculate $\int_1^e f(x) dx$. (1 mark)

8 (1A)

ii. Let b be a positive real number less than one. Find the exact value of b such that: (2 marks)

$$\int_{h}^{1} f(x)dx = 8.$$

We have that $\int_{b}^{1} f(x) dx = -8 \log_{e}(b)$. (1M) Solve $-8 \log_{e}(b) = 8$. $b = e^{-1}$. (1A)

c.

i. Express the area of the region bounded by the line segment CA, the x-axis, the line x = 1 and the line x = a in terms of a. (2 marks)

The area required is a trapezium. (1M, or other appropriate method) $A = \frac{1}{2} \times (f(a) + f(1)) \times (a - 1) = \frac{4(a^2 - 1)}{a}. \text{ (1A or equivalent)}$

ii. For what exact value of α does this area equal 8? (1 mark)

Solve $\frac{4(a^2-1)}{a} = 8 \Rightarrow a = 1 + \sqrt{2}$. (1A)

iii. Using the value for a determined in part c. ii., explain in words, without evaluating the integral, why

$$\int_{1}^{a} f(x)dx < 8.$$

Use this result to explain why a < e. (1 mark)

The area under the curve is less than the area of the trapezium so we must have:

$$\int_{1}^{a} f(x) \, dx < 8$$

and from **part b.i.** we have $\int_1^a f(x) dx = 8$, so it must be that a < e. (1A)

d. Find the exact values of m and n such that: (2 marks)

$$\int_{1}^{mn} f(x)dx = 4 \text{ and } \int_{1}^{\frac{m}{n}} f(x)dx = 3.$$

We have that:

$$\int_{1}^{mn} f(x)dx = 8(\log_{e}(m) + \log_{e}(n)) = 4$$
$$\int_{1}^{mn} f(x)dx = 8(\log_{e}(m) - \log_{e}(n)) = 3$$

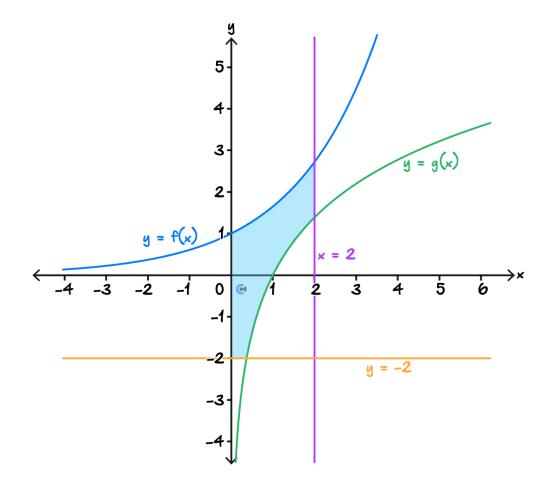
Solving we get $m = e^{\frac{7}{16}}$, $n = e^{\frac{1}{16}}$ OR $m = -e^{\frac{7}{16}}$, $-n = e^{\frac{1}{16}}$. (1A for each pair of solutions)

Question 28 (11 marks)

The shaded region in the diagram below represents part of the fencing boundary around a wildlife conservation zone in the Northern Territory. All distances are in kilometres.

Two of the boundaries of the conservation zone follow the graphs of the functions:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = e^{\frac{x}{2}}$$
 and $g: \mathbb{R}^+ \to \mathbb{R}, g(x) = 2\log_e(x)$.



a.

i. Evaluate $\int_{-2}^{0} f(x) dx$. (1 mark)

 $2-\frac{2}{e}$

ii. Hence, or otherwise, find the area of the region bounded by the graph of g, the x and y-axes, and the line y = -2. (1 mark)

Bounded by y-axis and inverse function so same area as in previous part. $Area = 2 - \frac{2}{3}$

iii. Find the total area of the shaded region. (2 marks)

Area = $2 - \frac{2}{e} + \int_0^1 f(x)dx + \int_1^2 (f(x) - g(x)) dx$. (1M) Area = $2 - \frac{2}{e} + 2e - 2\log_e(4)$. (1A, approx 3.93)

iv. The boundary at x = 2 is extended to x = a, where a > 2, such that the area of the conservation zone is 5 square kilometres. Find the value of a correct to three decimal places. (2 marks)

Area = $2 - \frac{2}{e} + \int_0^1 f(x) dx + \int_1^a (f(x) - g(x)) dx = 5.$ (1M) Thus, a = 2.692. (1A)

The conservation committee decides that a better conservation zone will be the region bounded by the graph of g and that of a new function $k:(-\infty,b)\to\mathbb{R}$, where $k(x)=-2\log_e(b-x)$, and b is a positive real number.

b.

i. Find, in terms of b, the x-coordinates of the points of intersection of the graphs of g and k. (2 marks)

We solve g(x) = k(x). (1M) This yields $x = \frac{b \pm \sqrt{b^2 - 4}}{2}$. (1A)

ii. Hence, find the set of values of b for which the graphs of g and k have two distinct points of intersection. (1 mark)

We require that $b^2 - 4 > 0 \Rightarrow b > 2$. (1A)

iii. Determine the value of *b*, correct to two decimal places, such that this new conservation zone has an area of 5 square kilometres. (2 marks)

Let $x^1 = \frac{b - \sqrt{b^2 - 4}}{2}$ and $x^2 = \frac{b + \sqrt{b^2 - 4}}{2}$ be the two points of intersection of g and k as found in **part b.i.**, where $x_2 > x_1$.

We require that $\int_{x_1}^{x_2} g(x) - k(x) dx = 5$. (1M)

Thus b = 3.56.

CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

