

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Antidifferentiation [4.1]

Workbook

Outline:

Recap of Differentiation	Pg 2-3	Definite Integrals ➤ Definite Integrals	Pg 13-23
Indefinite Integrals ➤ Indefinite Integrals ➤ Solving for + c	Pg 4-14	➤ Integral Properties	
Solving for + c		Reverse Chain Rule	Pg 24-29

Learning Objectives:

MM34 [4.1.1] - Find Antiderivative Functions
 MM34 [4.1.2] - Solve Definite Integrals
 MM34 [4.1.3] - Apply Integral Properties to Tackle Integration Questions

Section A: Recap of Differentiation

Let's do a quick recap of differentiation!

REMINDER

- Derivative of Standard Functions.
- Table of Standard Derivatives:

f(x)	f'(x)
χ^n	nx^{n-1}
e^x	e^x
$\log_e(x)$	$\frac{1}{x}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\sec^2(x)$

REMINDER

0

Differentiation Rules:

<u>Rule</u>	Function Notation	<u>Leibniz Notation</u>
The Chain Rule	$\frac{d}{dx}\Big(f\big(g(x)\big)\Big) = f'\big(g(x)\big)g'(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
The Product Rule	$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + g'(x)f(x)$	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$
The Quotient Rule	$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Question 1

Find f'(x) for each of the following functions:

$$a. \quad f(x) = e^x \sin(2x)$$

b.
$$g(x) = x^2 \log_e(x)$$

Section B: Indefinite Integrals

Sub-Section: Indefinite Integrals

How do we go back from $\frac{dy}{dx}$ to y?

Exploration: Understanding Anti-Differentiation

Let's first multiply $\frac{dy}{dx}$ by dx.

$$\frac{dy}{dx} \cdot dx = \underline{\hspace{1cm}}$$

We can think of dy as a tiny piece of y!

 \blacktriangleright Given that dy is a small piece of y, how can we find the overall y-value?

• We can find the ______.

$$y = S(\underline{\hspace{1cm}})$$
 where $S = Sum$

 \triangleright Since we are adding **a lot** of small dy's, I think we need a better notation for sum!

• Simply stretch the *S* vertically!

$$y = \int$$

We call the vertically stretched sum: _______

$$dy = \frac{dy}{dx} dx.$$

$$y = \int$$

Indefinite Integrals

The indefinite integral of f(x) gives us the **Antiderivative Function**.

$$\int \frac{dy}{dx} \ dx = y + c$$

- We call dy/dx the ______ and y the ______ function.
- c is an arbitrary real constant.

Discussion: Why do we need the + c?

Table of Standard Antiderivatives

f(x)	$\int f(x)dx$
x^n , $n \neq -1$	
$\sin(x)$	
$\cos(x)$	
$\sec^2(x)$	
e^x	
$\frac{1}{x}$	

NOTE: They are simply the opposite of differentiation.

<u>Discussion:</u> Why do we get two functions when antideriving $\frac{1}{x}$? Simply derive $\log_e(x)$ and $\log_e(-x)$ to find out!

Let's quickly practice!

Question 2 Walkthrough.

Evaluate the following indefinite integrals:

 $\mathbf{a.} \quad \int 6x^2 + 2x \, dx$

b. $\int 2\cos(x) - \sin(x) \, dx$

 $\mathbf{c.} \quad \int \frac{1}{x-3} + 4 \ dx$

 $\mathbf{d.} \quad \int 2e^x - \sec^2(x) \, dx$

$$e. \quad \int \frac{1}{x^3} - 2e^x \ dx$$

Active Recall: Table of Standard Antiderivatives

f(x)	$\int f(x)dx$
x^n , $n \neq -1$	
$\sin(x)$	
$\cos(x)$	
$\sec^2(x)$	
e^x	
$\frac{1}{x}$	

Question 3

Evaluate the following indefinite integrals:

a.
$$\int 3x^2 dx$$

b.
$$\int \frac{1}{2} x + 1 \, dx$$

c.
$$\int 2\sin(x) - 1 \, dx$$

d.
$$\int \frac{1}{x-2} - 3 \ dx$$

 $e. \quad \int \frac{1}{x-2} - \frac{e^x}{2} dx$

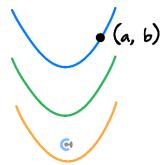
 $\mathbf{f.} \quad \int \frac{1}{x^2} + 3e^x \, dx$

TIP: Don't forget the +c.

Sub-Section: Solving for +c

<u>Discussion:</u> Why do we need to find + c?

Solving for +c



Substitute a point that the antiderivative function goes through.

Question 4 Walkthrough.

Find the rule for the function f given that $f'(x) = 2\cos(x)$ and $f(\pi) = -2$.

Your turn!

Question 5

Find the rule for the function f given that $f'(x) = 2x - e^x$ and f(0) = 5.

Question 6 Extension.

Find the rule for the function g given that $g'(x) = \frac{2}{\sqrt{x}} + \frac{1}{(x-1)^3}$ and g(4) = 8.

Section C: Definite Integrals

Sub-Section: Definite Integrals

What do definite integrals give us?

Exploration: Understanding Definite Integrals

Consider the following definite integral:

$$\int_a^b$$

- Definite integrals have _____ written on the integral.
- \triangleright Simplify and cancel the dx.

$$\int_a^b$$

 \blacktriangleright dy stands for instantaneous change of y: _____ in y.

$$\int_{a}^{b}$$

- What would happen if we added up all the small changes in y? ______.
- Definite integrals give us the change of the antiderivative function from ______

$$\int_{a}^{b} \frac{dy}{dx} dx = Change in y as x: a \to b$$

Definite Integrals

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

- \blacktriangleright a and b are called _____.
- \blacktriangleright Definite Integrals give us the _____ in the antiderivative as x changes from _____.

NOTE: We always substitute in the top terminal first!

Question 7 Walkthrough.

Evaluate the following definite integral:

a.
$$\int_0^2 x^3 + x^2 dx$$

b. Describe in words what you have found in **part a.**

Active Recall: Definite Integrals

$$\int_{a}^{b} f(x) \ dx = [F(x)]_{a}^{b} = \underline{\hspace{1cm}}$$

Question 8

Evaluate the following definite integrals:

a.
$$\int_{-1}^{2} \frac{1}{2} x^2 - 3x \ dx$$

b.
$$\int_0^{\frac{\pi}{6}} \sin(x) - 2 \, dx$$

c.
$$\int_3^5 \frac{1}{x-2} dx$$

d.
$$\int_1^2 \frac{1}{x+2} - 2x^2 dx$$

$$e. \quad \int_{-4}^{-1} \frac{1}{x^2} + e^{-3x} \ dx$$

Question 9 Extension.

Evaluate:

$$\int_{1}^{2} \frac{x^{3} - 3x + 2}{x^{2} - 2x + 1} + \frac{2}{x} + e^{-2x} dx$$

<u>Calculator Commands:</u> Indefinite Integrals and Definite Integrals

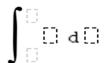
- Mathematica
 - Indefinite Integrals: "ESC + Intt."
 - Or simply "Integrate."

Integrate[function, x]

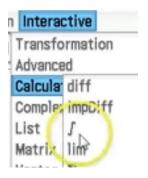
- Definite Integrals: "ESC + Dintt."
- Or simply "Integrate."

 $\textbf{Integrate[function,} \ \{\textbf{x, lower, upper}\}]$

- TI-Nspire
 - "Shift Plus"
 - Terminals are optional.



- Casio Classpad
 - Action/Interactive → Calculation → "Integral Sign."



Question 10 Tech-Active.

Using technology, evaluate the following:

$$\mathbf{a.} \quad \int \sin(x) + x^3 dx$$

b.
$$\int_0^1 e^x + \frac{1}{x+1} dx$$

Question 11 Tech-Active.

a. Evaluate $\int_0^2 x^2 - 3 dx$.

b. Find f(x), the antiderivative of $x^2 - 3$ in terms of c.

c. Find f(2) - f(0).

d. Hence, what $\int_0^2 x^2 - 3 dx$ gives us in words?

Sub-Section: Integral Properties

Remember that definite integrals represent change!

<u>Discussion:</u> Consider $\int_b^a f(x) dx$. What would happen if we flipped the terminal values? $\int_a^b f(x) dx$.

<u>Discussion:</u> Consider $\int_a^a f(x) dx$. What would the definite integral (change) equal to if the initial and final states are both the same? (x = a)

<u>Discussion:</u> If we add change from x = a to x = b and change from x = b to x = c, what would it be the same as?

In summary!

Integral Properties

The following rules also hold for definite integrals:

$$\int_{b}^{a} f(x) dx = \underline{\hspace{1cm}}$$

$$\int_{a}^{a} f(x) dx = \underline{\hspace{1cm}}$$

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \underline{\qquad}$$

$$\int_a^b c \cdot f(x) \, dx = \underline{\hspace{1cm}}$$

Question 12 Walkthrough.

Evaluate the following integrals of unknown functions given that,

$$\int_{-1}^{2} f(x) \ dx = 5 \text{ and } \int_{0}^{2} f(x) \ dx = -3.$$

a. $\int_{2}^{0} 2f(x) dx$

b. $\int_{-1}^{0} f(x) \ dx$

Active Recall: Integral Properties

The following rules also hold for definite integrals:

$$\int_{b}^{a} f(x) dx = \underline{\qquad}$$

$$\int_{a}^{a} f(x) \, dx = \underline{\qquad}$$

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \underline{\qquad}$$

$$\int_a^b c \cdot f(x) \, dx = \underline{\qquad}$$

Your turn!

Question 13

Evaluate the following integrals of unknown functions given that,

$$\int_0^3 f(x) \ dx = 2 \text{ and } \int_1^3 f(x) \ dx = 5$$

$$\mathbf{a.} \quad \int_0^1 f(x) \ dx$$

b.
$$\int_0^3 2f(x) - 1 \ dx$$

c.
$$\int_{3}^{1} 2f(x) dx$$

Section D: Reverse Chain Rule

R

How do we anti-derive a function when the inside function is ax+b instead of x?

Exploration: Understanding Reverse Chain Rule

- Consider f(ax + b), where the inside function is **linear**.
- What does the derivative look like?

$$f'(ax+b) = \underline{\hspace{1cm}}$$

- Now, let's try the other way around: Antidifferentiation.

$$\int af'(ax+b)\ dx = \underline{\hspace{1cm}}$$

- What did you have to divide by?
- This process is called ______.

The Reverse Chain Rule

$$\int f(ax+b) dx = \frac{1}{a}f(ax+b) + c$$

- Process of undoing the chain rule (where u = Linear).
 - \bullet We divide by the coefficient of x.

NOTE: This only works when the inside is linear. For non-linear chain rules, we will need another technique (more on this later).

Table of Standard Integrals with Reverse Chain Rule

- 1	
_	

f(x)	$\int f(x)dx$
$(ax+b)^n$	
$\sin(ax+b)$	
$\cos(ax+b)$	
$\sec^2(ax+b)$	
e^{ax+b}	
$\frac{1}{ax+b}$	

Simply divide by the coefficient of x.

Question 14 Walkthrough.

Evaluate the following indefinite integral:

$$\int (2x+1)^3 dx$$

Active Recall: Table of Standard Integrals with Reverse Chain Rule

f(x)	$\int f(x)dx$
$(ax+b)^n$	
$\sin(ax+b)$	
$\cos(ax+b)$	
$\sec^2(ax+b)$	
e^{ax+b}	
$\frac{1}{ax+b}$	

Question 15

Evaluate the following indefinite integrals:

a.
$$\int (3x+3)^{\frac{1}{2}} dx$$

b.
$$\int e^{4x+1} dx$$

$$\mathbf{c.} \quad \int \frac{2}{3x} \ dx$$

$$\mathbf{d.} \quad \int \frac{-3}{2x+5} \ dx$$

$$e. \quad \int \cos\left(\frac{3x+1}{4}\right) \, dx$$

$$\mathbf{f.} \quad \int \frac{1}{3} e^{-3x} + e^{-\frac{x}{2} + 1} dx$$

Question 16 Extension.

Evaluate:

$$\int_{1}^{2} (3x - 4)^4 - \frac{2}{x - 3} dx$$

Contour Check

□ Learning Objective: [4.1.1] - Find antiderivative functions

Key Takeaways

- Indefinite Integrals:
 - \circ The indefinite integral of f(x) gives us the **Antiderivative Function**.

$$\int \frac{dy}{dx} \ dx = y + c$$

- O We call dy/dx the _____ and y the _____ function.
- c is an arbitrary real constant.
- ☐ Table of Standard Integrals with Reverse Chain Rule:

$\underline{f(x)}$	$\int f(x)dx$
$(ax+b)^n$	
$\sin(ax+b)$	
$\cos(ax+b)$	
$\sec^2(ax+b)$	
e^{ax+b}	
$\frac{1}{ax+b}$	

□ Learning Objective: [4.1.2] - Solve definite integrals

Key Takeaways

Definite Integrals:

$$\int_a^b f(x) dx = [F(x)]_a^b = \underline{\qquad}$$

- \circ a and b are called _____.
- $lue{\circ}$ Definite Integrals give us the ______ in the antiderivative as x changes from

□ <u>Learning Objective</u>: [4.1.3] – Apply integral properties to tackle integration questions

Key Takeaways

- Integral Properties
 - The following rules also hold for definite integrals:

$$\int_{b}^{a} f(x) dx = \underline{\qquad}$$

$$\int_{a}^{a} f(x) dx = \underline{\hspace{1cm}}$$

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \underline{\qquad}$$

$$\int_{a}^{b} c \cdot f(x) \, dx = \underline{\qquad}$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

