

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Antidifferentiation [4.1]

Homework

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2 – Pg 16
Supplementary Questions	Pg 17 – Pg 30

Section A: Compulsory Questions

<u>Sub-Section [4.1.1]</u>: Find an Antiderivative Function

Qı	uestion 1
Ev	valuate each of the following integrals:
a.	$\int (3x^2 - 4x + 1) dx$
	
b.	$\int (\sin x + \cos x) dx$
	
c.	$\int \left(e^x + \frac{1}{x}\right) dx$, where $x > 0$.
	

d. $\int (\sec^2 x - 3) \, dx$

e. $\int \left(\frac{2}{x} + 5x^3\right) dx$, where x < 0.

 $\mathbf{f.} \quad \int (4e^x - \sin x) \, dx$

Omestica	n 1	1
Question	11 4	_

Evaluate each of the following integrals using the reverse chain rule.

a. $\int (3x+4)^5 dx$

b. $\int \cos(2x - \pi) \, dx$

$\mathbf{c.} \int e^{5x-7} \ dx$	λ
-----------------------------------	---

d. $\int \sec^2(4x) \ dx$

e. $\int \frac{1}{3x-1} dx$, where $x > \frac{1}{3}$.

- $\mathbf{f.} \quad \int \frac{1}{-2x+5} \, dx, \text{ where } x < \frac{5}{2}.$

Question 3

For each of the following, the derivative f'(x) is given, and the function f passes through a specific point. Find the rule for f(x).

a. $f'(x) = 4x^3 + 1$, and f(1) = 6.

b. $f'(x) = \sin(2x)$, and $f\left(\frac{\pi}{2}\right) = 0$.

c. $f'(x) = \frac{1}{x+4}$ and f(0) = 2, with x > -4.

Question 4 Tech-Active.

Find f(x) if $f'(x) = 3x^2 + 9x + \frac{1}{x}$ and f(1) = 6 and x > 0.

<u>Sub-Section [4.1.2]</u>: Evaluate Definite Integrals

Ω_{ii}	estion	_
Ωu	esuon	- 2

Evaluate the following definite integrals:

a. $\int_1^3 (2x+5) dx$

b.	$\int_0^\pi \sin(x) dx$
----	--------------------------

c. $\int_1^2 (3x^2 + 4x) \, dx$

J1 \

d. $\int_0^1 \frac{1}{x+2} \ dx$

e. $\int_0^{\frac{\pi}{12}} \sec^2(3x) \, dx$

f. $\int_1^4 (x^2 + 2x + 1) dx$

Question 6

Evaluate each of the following definite integrals:

a. $\int_0^1 (2x+1)^3 dx$

b.	$\int_{\pi}^{2\pi} \cos(3x - \pi) dx$
	J_{π} cos(s.c. n) as

c. $\int_0^{\frac{\pi}{12}} \sec^2(4x) \, dx$

d. $\int_0^1 e^{2x+1} dx$

 $\int_0^1 e^{2x+1} dx$

e. $\int_0^2 \frac{1}{3x+1} \ dx$

f. $\int_0^1 \frac{1}{2x-5} \, dx$

Question 7

Evaluate the following definite integrals:

a. $\int_0^{\log_e(2)} 4e^{2x} - \frac{3}{1+2x} dx$

h	\mathcal{C}^2	6 <i>x</i> +5	da
D.	J_1	$(3x^2+5x+1)^2$	dχ

HINT: What is the derivative of $\frac{1}{f(x)}$?

c. $\int_0^{\frac{\pi}{4}} \left(\frac{3}{4} \cos \left(2x + \frac{\pi}{3} \right) + \frac{1}{2} \sec^2(x + \pi) \right) dx$

VCE Methods ¾ Questions? Message +61 440 138 726

Question 8 Tech-Active.	
Evaluate the following definite integral using technology: $\int_0^{\frac{\pi}{4}} \sin^2(x) \cos(x) dx$	

Space for Personal Notes			

<u>Sub-Section [4.1.3]</u>: Apply Integral Properties to Tackle Integration Questions

Question 9

Evaluate the following integrals given that:

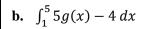
$$\int_0^4 f(x) \, dx = 6 \text{ and } \int_2^4 f(x) \, dx = 5$$

 $\mathbf{a.} \quad \int_0^2 f(x) \, dx$

b.	$\int_0^4 3f(x) -$	2dx
----	--------------------	-----

c. $\int_2^4 2f(x) + x \, dx$

CONTOUREDUCATION


Question 10

Evaluate the following integrals given that:

$$\int_{1}^{5} g(x) dx = 7 \text{ and } \int_{3}^{5} g(x) dx = 4$$

 $\mathbf{a.} \quad \int_1^3 g(x) \, dx$

c. $\int_1^3 2g(x) + 3x \, dx$

Question 11

Given that:

$$\int_{1}^{4} g(x) dx = 6 \text{ and } \int_{4}^{7} g(x) dx = -3$$

Evaluate the following integrals:

a. $\int_2^8 2g\left(\frac{x}{2}\right) dx$

b. $\int_1^7 2g(x) + 1 dx$

c. $\int_6^9 2g(x-5) dx$

Sub-Section: The 'Final Boss'

Question 12
Let $f(x) = 2e^x + \cos(2x)$, and let $F(x)$ be an antiderivative of $f(x)$.
a. Given that $F(0) = 5$, find an explicit expression for $F(x)$.
b. Hence, evaluate $\int_0^{\log_e(2)} f(x) dx$.
Let g be a function such that:
$\int_0^3 g(x)dx = 12$
c. Evaluate $\int_0^6 \frac{1}{2} g\left(\frac{x}{2}\right) dx$.

Section B: Supplementary Questions

<u>Sub-Section[4.1.1]</u>: Find an Antiderivative Function

Question 13

Evaluate the following:

a. $\int \frac{2}{\sqrt{x}} dx$

b. $\int x^4 + 3x - 9 \, dx$

c. $\int \left(\frac{1}{x} + e^{7x} + x^{\pi} + 7\right) dx$ where x < 0.

 $\mathbf{d.} \quad \int (t-6)^2 \, dt$

e. $\int (2\cos(x) + 4\sin(x)) dx$

f. $\int (3x - \sec^2(x)) dx$

Question 14

Find an antiderivative of the following functions:

a. $(3x+1)^5$

b. $5e^{7x}$

c. $\sec^2(4x-2)$

d. $\sin(-2x + 3)$

e. $(7x-4)^{\frac{3}{2}}$

f. $\frac{3}{2x+3}$ where $x > -\frac{3}{2}$.

4	(1	1
	Н		1
	7		

Question 15

a. Given $f'(x) = 4x^3 - 2x + 7$, and f(1) = 10, find f(x).

b. Given $f'(x) = \frac{5}{2x+1}$, and f(0) = 2, find f(x) for $x > -\frac{1}{2}$.

c. Given $f'(x) = 6e^{3x}$, and f(0) = 4, find f(x).

Question 16 Tech-Active.

Find y in terms of x if $\frac{dy}{dx} = 6(2x + 1)^2 - \frac{10}{(3x-4)^2}$ and y = 5 when x = 1.

<u>Sub-Section [4.1.2]</u>: Solve Definite Integrals

Question 17

Evaluate the following:

a. $\int_0^1 (3x^2 + 2x) dx$

b. $\int_1^2 (\sqrt{x} + \frac{4}{3}x^3) dx$

c. $\int_0^2 (x^2 + 1) dx$

d.	\int_1^e	$\frac{1}{x} dx$				

f. $\int_0^2 (x+1)^7 dx$

Question 18

Evaluate the following:

a. $\int_0^{\frac{\pi}{4}} \frac{\sec^2(x) + \sin(x)}{2} dx$

	3π				
b.	\int_{-2}^{2}	$(6\sin(2w))$	-10cc	s(w)	dw

c.	\int_0^2	$(10x^2+10)dx$	X
----	------------	----------------	---

d. $\int_0^{\frac{\pi}{2}} \sin\left(2\left(\theta + \frac{\pi}{4}\right)\right) d\theta$

e. $\int_0^{\frac{\pi}{4}} \cos(2\theta) d\theta$

f. $\int_0^{\pi} \sin(4\theta) \, d\theta$

Question 19

a. Evaluate $\int_1^3 \left(2x^3 - \frac{6}{x+1}\right) dx.$

b. Evaluate $\int_0^1 4 e^{2x+1} dx$.

- c. Evaluate $\int_0^{\frac{\pi}{2}} (\sin(3x) + 4\cos(x)) dx.$

Question 20 Tech-Active.

Evaluate $\int_0^1 3(4x + x^4)(10x^2 - 2) dx$.

Sub-Section [4.1.3]: Apply Integral Properties to Tackle Integration **Questions**

Question 21

Let f(x) = g'(x) and h(x) = k'(x), where $g(x) = (x^2 + 1)^4$ and $k(x) = \sin(x^2)$.

Find:

a. $\int f(x) dx$

b. $\int f(x) + h(x) dx$

c. $\int 3h(x) dx$

CONTOUREDUCATION

Question 22

Suppose $\int_1^4 f(x) dx = 2$ and $\int_1^4 g(x) dx = 7$. Evaluate the following integrals:

a. $\int_1^4 (5 f(x) + 3 g(x)) dx$

b. $\int_1^4 (6-2f(x)) dx$

c. $\int_1^4 (2 f(x) + 10 g(x) + 3) dx$

ONTOUREDUCATION

Question 23

Suppose it is known that $\int_1^5 f(x) dx = -3$ and $\int_2^5 f(x) dx = 4$.

a. Evaluate $\int_1^2 f(x) dx$.

b. Hence, evaluate $\int_1^2 (3 - 4f(x)) dx$

c. Evaluate $\int_2^1 f(x) dx$.

VCE Methods ¾ Questions? Message +61 440 138 726

Que	Question 24 Tech-Active.					
Find $\int_0^1 f(3x+1) dx$ given that $\int_1^4 f(x) dx = 5$.						
•						

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

