

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Circular Functions Exam Skills [3.4]

Workbook

Outline:

<u>Introduction</u>	Pg 2-4		
Recap General Solutions with Domain Rest Hidden Quadratics Graphing Sine and Cosine Functions		 Circular Functions Exam Skills Equivalent General Solutions Sum and Difference of Trigonometric Functions 	Pg 22-23
 Finding the Rule Understanding Tangent Graphs 		Technology Exam Skills	Pg 24-26
Graphing Tangent FunctionsFraction of Period		Exam 2	Pg 27-34
Warm Up Test	Pg 18-21		

Section A: Introduction

Let's quickly go over last week's content.

Contour Check

□ Learning Objective: [3.3.1] - Solve advanced trigonometric equations

Key Takeaways

- General Solutions with domain restriction
 - O Steps:
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary _____ for one period.
 - **3.** Solve for *x* by equating the necessary angles to the _____ of the trigonometric functions.
 - **4.** Add $period \cdot n$ where the ______ of n is appropriately restricted.
- Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

□ Learning Objective: [3.3.2] - Graph sine, cosine, and tangent functions

Key Takeaways

Amplitude, Period and Average Value

For
$$y = A\sin/\cos(nx + b) + k$$

$$Amplitude = _$$

$$Period = _$$

$$Average Value = _$$

- ☐ Graphing of sin and cos Functions
 - Steps:
 - 1. Identify, _____
 - 2. Create a "mini version" of the graph you are about to draw.
 - 3. Start plotting the function from when the angle = _____.
 - 4. Draw the start and end of the periods, and plot the halves (turning points).
 - **5.** Find any______.
 - **6.** Join all the points!

☐ Steps For Sketching tan Functions				
1.	Identify			
■ The period =				
 Find the vertical asymptotes by solving for angle = Find other vertical asymptotes within the domain by adding the period to answer from the previous step. 				
3.	3. Plot the inflection point (h, k) (Midpoint of the two).			
\square x-value of inflection point = x-value which makes angle = 0.				
\Box y-value of inflection point = vertical translation of the function.				
4.	Find any			
5.	Sketch a shape.			
	Learning Objective: [3.3.3] - Fraction of periods			
	□ <u>Learning Objective</u> : [3.3.3] - Fraction of periods Key Takeaways			
□ Fra	Learning Objective: [3.3.3] - Fraction of periods Key Takeaways			
□ Fra	Key Takeaways			
□ Fra	Key Takeaways $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
	Key Takeaways			
	Key Takeaways Inction of Period Fraction of Period = % of Period = × 100%			
	Key Takeaways Inction of Period Fraction of Period = % of Period = × 100%			

Section B: Recap

Sub-Section: General Solutions with Domain Restrictions

If you were here last week, skip to Section C - Warmup Test.

3

Misconception

"When there is a domain restriction, we always get particular solutions"

TRUTH: If the domain restriction has either ∞ or $-\infty$, we can still have general solutions

Question 1

Solve for the following trigonometric equation.

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \text{ for } x \ge 0$$

General Solution with Domain Restriction

E.g.,
$$\operatorname{trig}\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$$
 for $x\geq 0$

- We can have infinite solutions for restricted domains.
- \blacktriangleright The value of n is also restricted.

Sub-Section: Hidden Quadratics

Let's have a look at hidden quadratics for circular functions!

Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$
Let $A = f(x)$

Question 2 Walkthrough.

Solve the following for the values of x.

$$\sin^2\left(x + \frac{\pi}{3}\right) + \sin\left(x + \frac{\pi}{3}\right) = 2, 0 \le x \le 3\pi$$

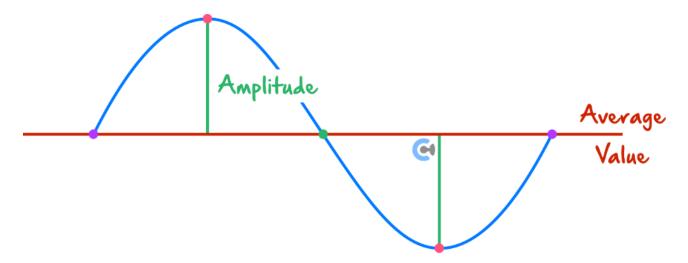
Sub-Section: Graphing Sine and Cosine Functions

Sine and Cosine Graphs

<u>Sine</u>	<u>Cosine</u>	
$y = \sin(x)$ 1.0 0.5 $\frac{\pi}{4} = \frac{\pi}{2} = \frac{3\pi}{4} = \frac{5\pi}{4} = \frac{3\pi}{2} = \frac{7\pi}{4} = 2\pi$ -1.0	y = cos(x) 1.0 0.5 -0.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	

<u>Discussion:</u> Is cos(x) an even function or an odd function. What about sin(x)?

<u>Discussion:</u> What does $\sin\left(\frac{\pi}{2}+x\right)$ equal to? So, how can we translate sine function to cosine function?



Amplitude, Period and Average Value

For
$$y = A\sin/\cos(nx + b) + k$$

Consider the sign of our graph

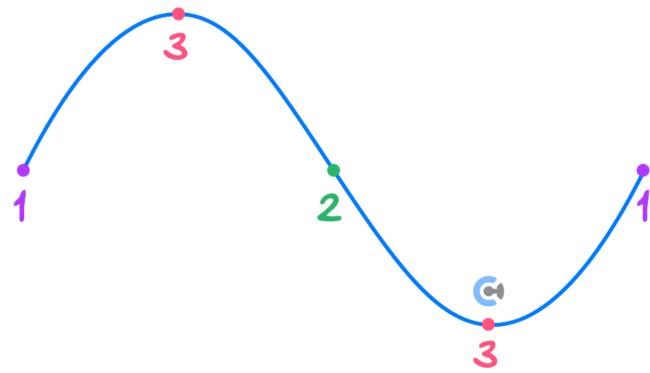
Amplitude =
$$|A|$$

$$\mathsf{Period} = \frac{2\pi}{n}$$

Average Value = k

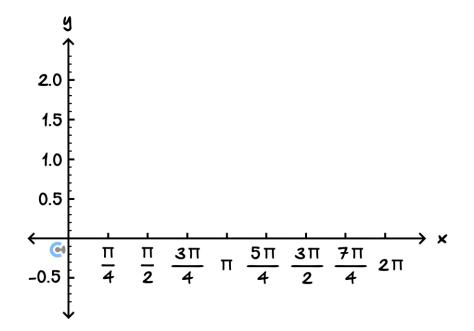
Question 3

Identify the amplitude, period and average value of the following functions:


$$\mathbf{a.} \quad f(x) = 2\sin\left(\frac{\pi}{3} - 3x\right) + 1$$

b.
$$g(x) = -3\cos(2x+3) - 4$$

Graphing of sin And cos Functions



- 1. Identify amplitude, period, mean value, and positive/negative shape.
- 2. Create a "mini-version" of the graph you are about to draw.
- **3.** Start plotting the function from when the angle = 0.
- 4. Draw the start and end of the periods, and plot the halves (turning points).
- **5.** Find any x-intercepts.
- **6.** Join all the points!

Question 4

Sketch the graph of $f(x) = -\sin(2x) + 1$ for $x \in [0, 2\pi]$ on the axes below, labelling all intercepts and endpoints with their coordinates.

Sub-Section: Finding the Rule

Finding the Rule

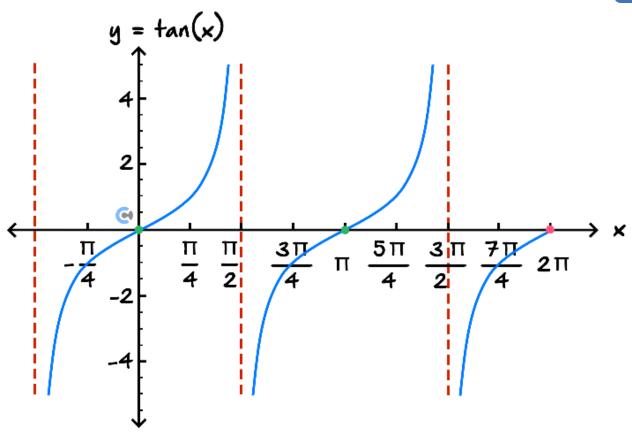
Amplitude (A) =
$$\frac{max-min}{2}$$

Average (k) =
$$\frac{max + min}{2}$$

Question 5

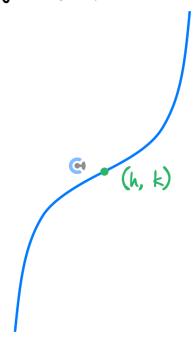
A function with rule $y = A \sin(nt) + b$ where A > 0 has a range [-5,3] and period 4. Find A, n and b.

TIP: Graphing helps!



Graph of Tangent

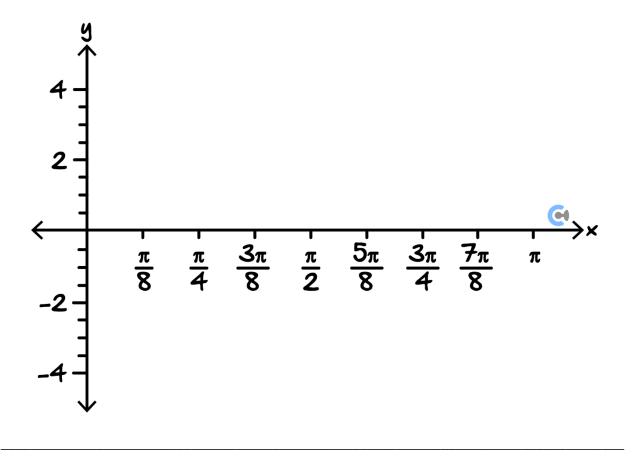
Sub-Section: Graphing Tangent Functions



Steps for Sketching tan Functions

- Identify:
 - The period = $\frac{\pi}{n}$.
- Find the vertical asymptotes by solving for angle $=\frac{\pi}{2}$. Find other vertical asymptotes within the domain by adding the period to answer from the previous step.
 - Geometric For instance, for $\tan \left(2x \frac{\pi}{3}\right)$, solve $2x \frac{\pi}{3} = \frac{\pi}{2}$ for x.
- \blacktriangleright Plot the inflection point (h, k) (Midpoint of the two vertical asymptotes).
 - \checkmark x-value of inflection point = x-value, which makes angle = 0.
 - \mathbf{G} y-value of inflection point = vertical translation of the function.

eg:
$$tan(x-h)+k$$


- Find any x -intercepts.
- Sketch a "cubic-like" shape.

Question 6

Sketch the following on the axes below, labelling all intercepts, points of inflection, and endpoints with their coordinates, and all asymptotes with their equations.

$$y = \tan\left(2x + \frac{\pi}{2}\right) + 1 \text{ for } x \in (0, \pi)$$

Sub-Section: Fraction of Period

Fraction of Period

$$Fraction of Period = \frac{Duration}{Period}$$

$$\%$$
 of $Period = \frac{Duration}{Period} \times 100\%$

Question 7 Walkthrough.

The population of dogs in a certain household is modelled by P(t).

$$P(t) = 5 - 2\cos\left(\frac{\pi}{4}t\right)$$

Where P(t) is the number of dogs t years since 2024. Find the fraction of time where the population is above 4.

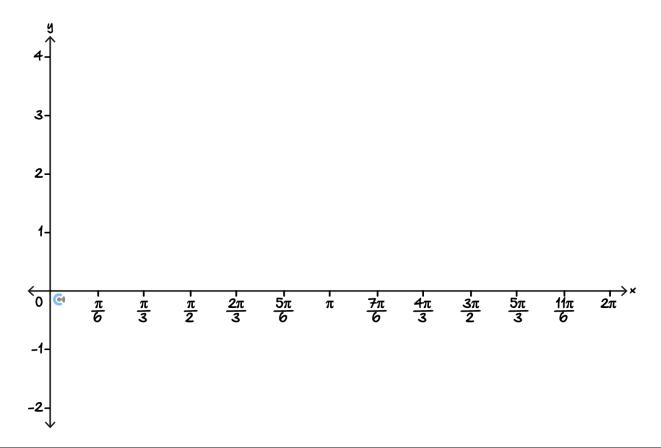
Section C: Warm Up Test (16 Marks)

INSTRUCTION: 16 Marks. 16 Minutes Writing.

Question 8 (8 marks)

Consider the function $f(x) = -2\sin\left(2x - \frac{\pi}{6}\right) + 1$.

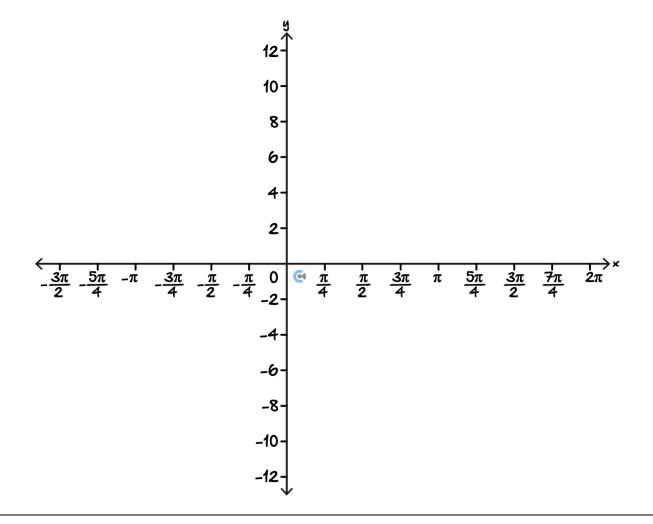
a.

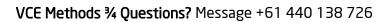

i. Find the general solution to f(x) = 0. (3 marks)

ii. Hence, state the general solution to f(x) = 0 for x > 0. (1 mark)

b. Find all solutions to f(x) = 0 for $x \in [0,2\pi]$. (1 mark)

c. Sketch the graph of y = f(x) for $x \in [0,2\pi]$. Label all endpoints, axial intercepts, and turning points with coordinates. (3 marks)


Question 9 (5 marks)


Consider the function $g(x) = 2\tan\left(\frac{x}{2} + \frac{\pi}{4}\right) - 2$.

a. Find the general solution to g(x) = 0. (2 marks)

b. Hence, sketch the graph of y = g(x) for $x \in \left(-\frac{3\pi}{2}, 2\pi\right]$. Label all axes intercepts, endpoints, and points of

b. Hence, sketch the graph of y = g(x) for $x \in \left(-\frac{\pi}{2}, 2\pi\right]$. Label all axes intercepts, endpoints, and p inflection with coordinates and asymptotes with their equations. (3 marks)

Question 10 (3 marks)		
olve	e equation $\cos^2(2x) + 7\cos(2x) = 4$ for $x \in [0,2\pi]$.	
_		
_		
_	······································	
_		
_		
_		
_		
	in Developed Notes	
pac	or Personal Notes	

Section D: Circular Functions Exam Skills

Sub-Section: Equivalent General Solutions

Discussion: Is $0 + 6k, k \in \mathbb{Z}$ the same as $6 + 6k, k \in \mathbb{Z}$?

Multiple Forms of a General Solution

$$a + Period \cdot n = b + Period \cdot n$$

If the difference of a and b is a multiple of period.

Question 11 (1 mark)

Which one of the following is **not** the same as the rest?

A.
$$\frac{5\pi}{6} + \frac{\pi}{3}n, n \in \mathbb{Z}$$

B.
$$\frac{\pi}{2} + \frac{\pi}{3}n, n \in Z$$

C.
$$-\frac{\pi}{2} + \frac{\pi}{3}n, n \in \mathbb{Z}$$

D.
$$\frac{5\pi}{3} + \frac{\pi}{3}n, n \in Z$$

$$\mathbf{E.} \quad \frac{\pi}{6} - \frac{\pi}{3}n, n \in \mathbb{Z}$$

NOTE: Very important for multiple choice questions in VCAA exams!

Sub-Section: Sum and Difference of Trigonometric Functions

<u>Discussion</u>: Consider $\sin(x)$ and $\cos\left(\frac{2}{3}x\right)$. What would be the period of $\sin(x) + \cos\left(\frac{2}{3}x\right)$?

Period For Sum/Difference of Circular Functions

When we add two circular functions,

Period of the sum = LCM of two periods

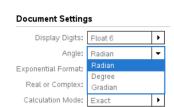
Question 12

Find the period of $\sin(2x) - \cos(4x)$.

NOTE: This only works for sum and difference. Multiplication does not work due to the compound angle formula (only in Specialist Maths).

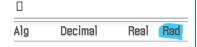
Space for Personal Notes

MM34 [3.4] - Circular Functions Exam Skills - Workbook



Section E: Technology Exam Skills

Calculator Commands: Degrees And Radians



▶ TI

Casio

Change at the bottom of the screen

Mathematica

• In radians by default.

❤ Write "Degree"

In[27]:= **Sin[30 Degree]**Out[27]= $\frac{1}{2}$

<u>Calculator Commands:</u> Solving Trigonometric Functions.

► TI

solve(trig(...) = a, x) | domain restriction

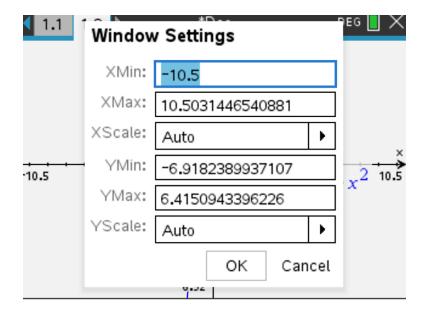
• | is under control equal.

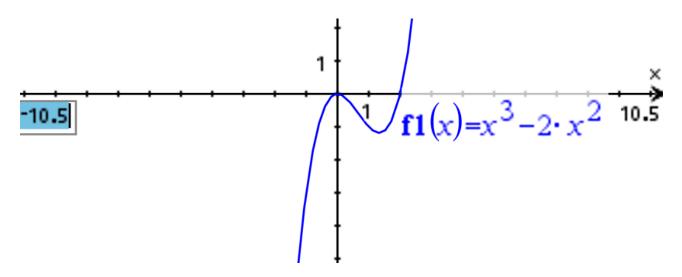
Casio

solve(trig(...) = a, x) | domain restriction

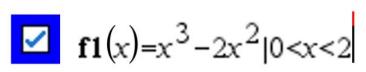
• | is under maths 3.

Mathematica

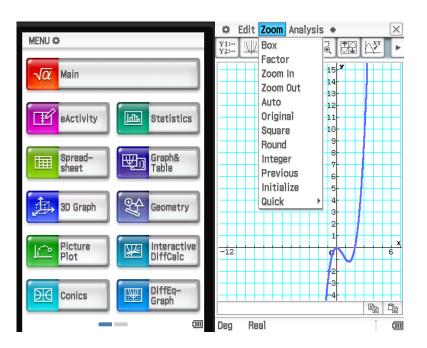

Solve[trig[] == a &&
domain restriction, x]



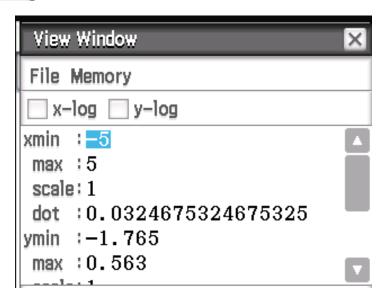
Calculator Commands: Graphing


- Open a graph page and plot your function.
- **>** Zoom settings: Menu → 4 (window/zoom) → 1 enter your x and y-ranges.

Can also click the axis numbers on the graph and alter them directly.



- Menu \rightarrow 6 (Analyse) to find min/max x and y-intercepts.
- Restrict domain to 0 < x < 2 use the bar can get it from ctrl+=



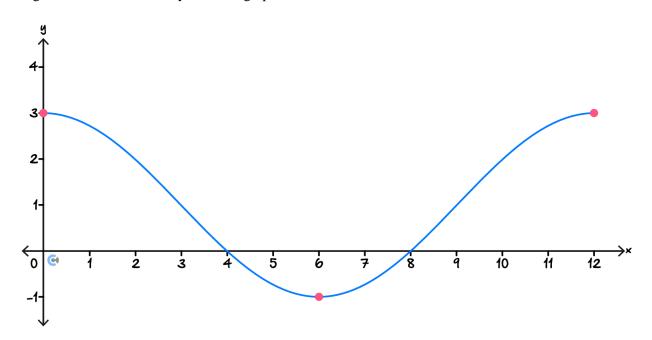
Casio: Click Graph & Table, and enter the function.

- Analysis → G-Solve to find intercepts.
- Use this button to set the view window.

Use | to restrict domain → find it in Math 3.

$$\sqrt{y_1} = x_3 = 2 \cdot x_2 \mid 0 < x < 2$$

- **Mathematica:** Plot[function, {x, xmin, xmax}, PlotRange → {ymin, ymax}]
 - PlotRange is optional but can be used to make the scale appropriate for the question.


Section F: Exam 2 (30 Marks)

INSTRUCTION: 30 Marks. 5 Minutes Reading. 40 Minutes Writing.

Question 13 (1 mark)

The diagram below shows one cycle of the graph of a circular function.

This graph could have the rule:

$$\mathbf{A.} \ \ y = 2\cos\left(\frac{1}{6}x\right) + 1$$

B.
$$y = 2\cos\left(\frac{\pi}{6}x\right) + 1$$

$$\mathbf{C.} \ \ y = -2\sin\left(\frac{\pi}{6}x\right) + 1$$

D.
$$y = 2\cos\left(\frac{\pi}{12}x\right) + 1$$

Question 14 (1 mark)

For the equation $2\cos(3x) = 1$, the **sum** of the solutions in the interval $[0, \pi]$ is equal to:

- $\mathbf{A.} \ \frac{2\pi}{3}$
- **B.** 2π
- C. $\frac{13\pi}{9}$
- **D.** 6π

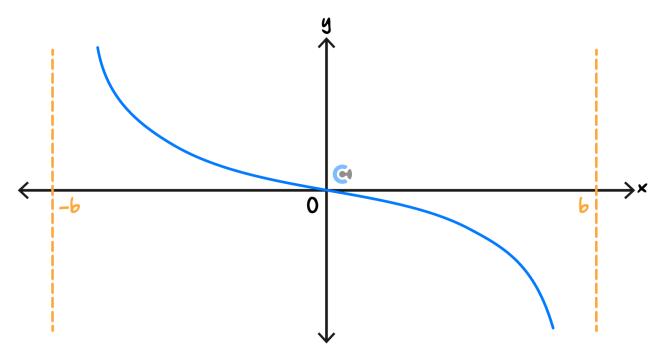
Question 15 (1 mark)

For the function $f: \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$, $f(x) = a\sin(2x - b) + c$, where a, b, and c are positive constants. The minimum and maximum values of f respectively are:

- **A.** $-\frac{\pi}{3}$ and $\frac{2\pi}{3}$
- **B.** c a and a + c
- C. a-c and a+c
- **D.** a b and b + c

Question 16 (1 mark)

If m is the smallest solution and n the largest solution to $\sqrt{3}\cos(3x) - \sin(3x) = 0$ for $x \in [-\pi, \pi]$, then m + n is:


- $A. -\frac{\pi}{6}$
- $\mathbf{B.} \ \frac{\pi}{3}$
- C. $-\frac{\pi}{9}$
- $\mathbf{D.} \ \frac{\pi}{6}$

Question 17 (1 mark)

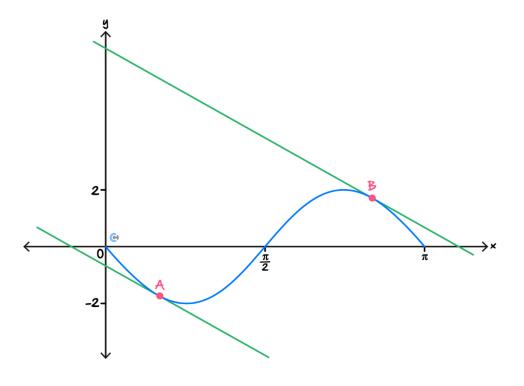
The diagram below shows one period of the graph with equation $y = \tan(ax)$.

Vertical asymptotes have the equations x = b and x = -b.

Possible values of a and b are:

A.
$$a = -3, b = \frac{\pi}{6}$$

B.
$$a = -3, b = \frac{2\pi}{3}$$


C.
$$a = 3, b = \frac{\pi}{6}$$

D.
$$a = -\frac{1}{3}$$
, $b = \frac{\pi}{6}$

Question 18 (13 marks)

Consider the function $f:[0,\pi] \to \mathbb{R}$, where $f(x) = -2\cos\left(2x - \frac{\pi}{2}\right)$. The graph of f is shown with tangents drawn at points A and B.

a.

i. Write a rule for f(x) in the form $a\sin(bx)$, where a and b are integers. (1 mark)

ii. Find f'(x). (1 mark)

iii. State the maximum and minimum values of f'(x) for $x \in \left[0, \frac{\pi}{4}\right]$. (2 marks)

b.

i. The gradient of the curve y = f(x) when $x = \frac{5\pi}{6}$ is -2. Find the other value of x for which the gradient is also -2. (1 mark)

ii. Find the equation of the tangent to the curve at $x = \frac{5\pi}{6}$. (1 mark)

iii. Find the x-and y-intercepts of the tangent line found in **part b.ii.** (2 marks)

c. The two tangents to the curve at points A and B both have a gradient -2. A horizontal translation of m units moves the tangent at A to the tangent at B. Find the exact value of m. (2 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

d. Let	t $h: \mathbb{R} \to \mathbb{R}$ be defined by $h(x) = 2\sin(2x)$.
i.	State the maximum vertical distance between the functions f and h . (1 mark)
ii.	Find a general form for the coordinates of all turning points of h . (2 marks)
Space	for Personal Notes

Question 19 (12 marks)

Leila is monitoring the temperature in a temperature-controlled aquatic tank. During a 24-hour period, the water temperature T(t) in degrees Celsius is modelled by:

$$T(t) = 20 + 2\cos\left(\frac{\pi t}{8}\right), 0 \le t \le 24,$$

Where t is the number of hours from the beginning of the 24-hour time interval.

a. State the maximum temperature in the tank and the value(s) of t when this occurs. (2 marks)

- **b.** State the period of the function *T*. (1 mark)
- **c.** Find the smallest value of *t* for which the temperature is exactly 21°C. (2 marks)

d. For how many hours during the 24-hour period is the temperature greater than or equal to 21°C? (2 marks)

e.	Find the values of t , when the water is cooling down the fastest. (2 marks)					
The	e water temperature is now modelled over a 48 hours period instead, with the rule for $T(t)$ being unchanged. us,					
ĺ	$T(t) = 20 + 2\cos\left(\frac{\pi t}{8}\right), \qquad 0 \le t \le 48$					
f.						

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

