

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Circular Functions Exam Skills [3.4]

Homework

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 3-Pg 12
Supplementary Questions	Pg 13-Pg 22

Section A: Recap

Contour Check

□ <u>Learning Objective</u>: [3.4.1] – Period for sum of trigonometric functions and equivalent general solutions

Key Takeaways

Multiple Forms of a General Solution

 $a + Period \cdot n = b + Period \cdot n$

If the difference of a and b is a multiple of period.

- Period For Sum/Difference of Circular Functions
 - When we add two circular functions.

Period of the sum = LCM of two periods

Space for Personal Notes

Section B: Compulsory Questions

Sub-Section: Basics (Tech Free)

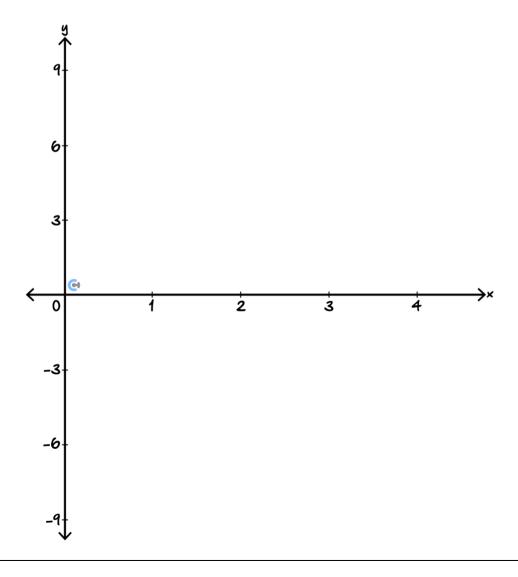
Question 1 [3.4.1]
Find the period of $sin(2x) - cos(3x)$.
Question 2 [3.3.3]
Consider the function $f(x) = 2\sin(2x) + 2$. Find the fraction of a period that $f(x) > 3$.
Space for Personal Notes

Question 3 [3.2.3]

Solve the equation $\sin\left(\frac{x}{3}\right) = -\frac{1}{2}$ for $x \in [2\pi, 6\pi]$.

Question 4

a. Find a general solution to the equation $2 \sin \left(x - \frac{\pi}{3}\right) = \sqrt{3}$. [3.2.3]


b. Subu is marking a student's answer to **part a.**, the student gave the answer:

$$x = 2n\pi - \frac{4\pi}{3}$$
, $2n\pi - \pi$, where $n \in \mathbb{Z}$.

Is the student's answer correct? Explain. [3.4.1]

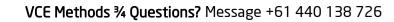
Question 5 [3.3.2]

Sketch the graph of $y = \tan\left(\frac{\pi}{2}(x-1)\right) - 1$ for $x \in (0,4)$. Label all axes intercepts with coordinates and asymptotes with their equations.

Sub-Section: Problem Solving (Tech-Active)

Question 6

The temperature T (in degrees Celsius) inside a greenhouse at t hours after midnight on a typical November day is modelled by the formula:

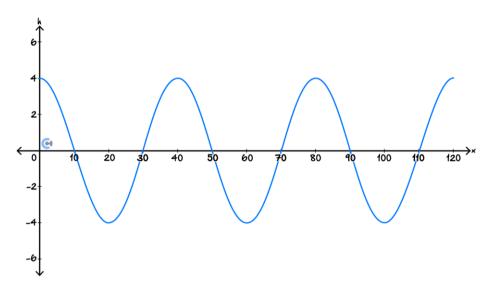

$$T = 25 - 4\cos\left(\frac{\pi(t-3)}{12}\right)$$
, for $0 \le t \le 24$.

Use this model to answer the following:

a. State the maximum and minimum temperatures reached inside the greenhouse during the day. [3.3.2]

b. At what time is the maximum temperature reached? [3.2.3]

Determine the time(s) when the temperature is exactly 23°C. [3.2.3]



d.		nsider the hottest continuous 4-hour period in the greenhouse. What is the minimum temperature reached ing this period? Give your answer to two decimal places. [3.3.2]
e.		the greenhouse, there is an automatic watering system that activates when the rate of change of temperature is respect to time is at least +0.2°C per hour. It switches off once the rate drops below this threshold.
	i.	Use calculus to find an expression for the rate of change of temperature with respect to time.
	ii.	Hence, determine the time interval(s) (correct to two decimal places) during which the watering system will be on. [3.2.3]
Sp	ace	for Personal Notes

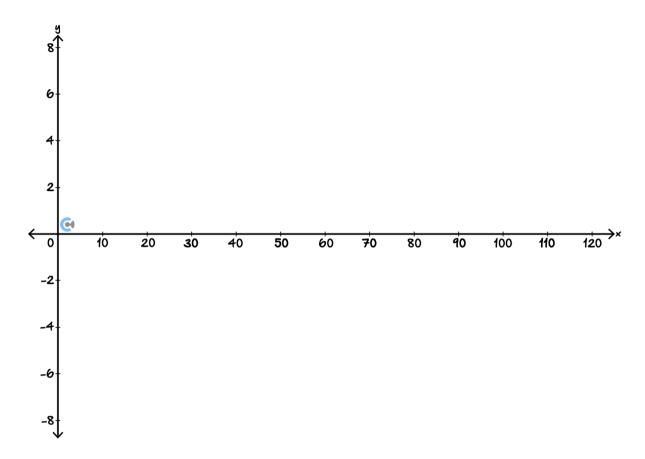
An environmental scientist is monitoring the shape of sand dunes along a stretch of beach in Western Australia. She observes that the profile of the dunes can be modelled by a sine curve. Let $h \ cm$ represent the height of the sand above sea level and $x \ m$ represent the horizontal distance along the beach.

a. What is the period of this curve? [3.3.2]

b. What is the amplitude of the curve? [3.3.2]

c. The height of the dunes can be modelled by a function of the form $h = a \sin(n(x - b))$. Write down an equation for the height of the dunes. [3.3.2]

d. If this pattern continues for $2 \, km$, how many dune troughs would a person walk through? [3.3.2]



Further along the beach, the wind pattern changes, causing the shape of the dunes to be modelled by a more complex function:

$$h = 3\sin\left(\frac{\pi}{10}x\right) + 5\cos\left(\frac{\pi}{30}x\right)$$

e. Sketch this function over the domain $0 \le x \le 120$. You only need to label the endpoints with coordinates. [3.3.2]

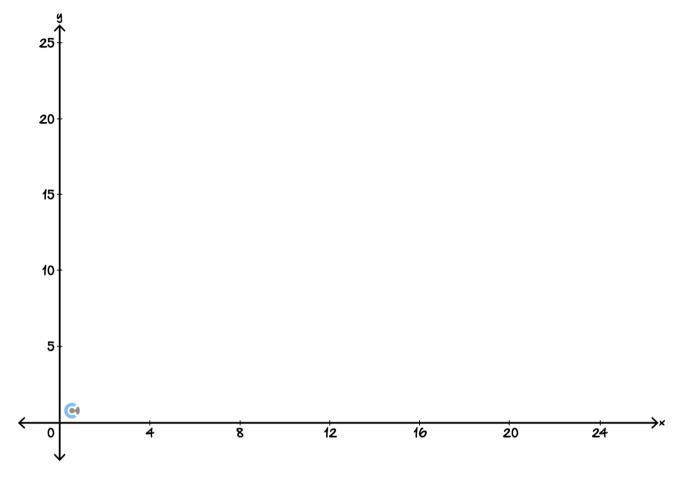
f. What is the period of this new function? [3.4.1]

g. What are the absolute maximum and minimum values of this function? Give your answers correct to two decimal places. [3.3.2]

h. Give the coordinates, correct to two decimal places, of all local maximum points during the first cycle. [3.2.3]

Question 8

The temperature, $A^{\circ}C$, inside a cabin at t hours after 3 PM is given by the rule:


$$A = 20 - 4\cos\left(\frac{\pi}{12}t\right)$$
, for $0 \le t \le 24$.

The temperature, $B^{\circ}C$, outside the cabin at the same time is given by:

$$B = 14 + 6\cos\left(\frac{\pi}{12}t\right)$$
, for $0 \le t \le 24$.

a. Find the temperature inside the cabin at 9 AM. [3.2.1]

b. Sketch the graphs of y = A(t) and y = B(t) on the axes below. Label all endpoints and stationary points with coordinates. [3.3.2]

c. Hence, state the values of t for when the temperature inside the cabin is greater than the temperature outside. [3.2.3]

VCE Methods ¾ Questions? Message +61 440 138 726

i.	State the rule for $D(t)$.
ii.	A sudden heat wave occurs and now the temperature outside is given by $K + 6\cos\left(\frac{\pi}{12}t\right)$. The temperature inside the cabin remains unchanged.
	Find the value of <i>K</i> if the temperature outside is warmer than inside the cabin for exactly 16 hours. [3.3.3]
ace	e for Personal Notes

Section C: Supplementary Questions

Sub-Section: Exam 1 Questions

\sim	4 •	Ω
	estion	u

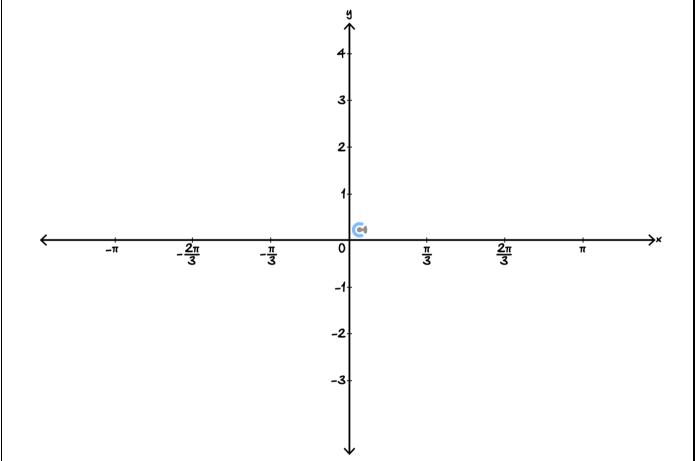
a.	State	the range	and	neriod	οf	the	function	
a.	State	me range	anu	periou	OI	uie	Tunction	l.

$$h: \mathbb{R} \to \mathbb{R}$$
, $h(x) = 5 + 6\cos\left(\frac{\pi x}{2}\right)$

h	Solve	the e	quation:
v.	SOLVE	me e	quanon.

$$\sin\left(3x - \frac{\pi}{6}\right) = \frac{1}{2}, \text{ for } x \in [0, \pi].$$

Space for Personal Notes



For the function $f: [-\pi, \pi] \to \mathbb{R}$, $f(x) = -3\sin\left(2x + \frac{\pi}{3}\right)$.

a. Write down the amplitude and period of the function.

b. Sketch the graph of the function f on the set of axes below. Label axes intercepts with their coordinates. Label endpoints of the graph with their coordinates.

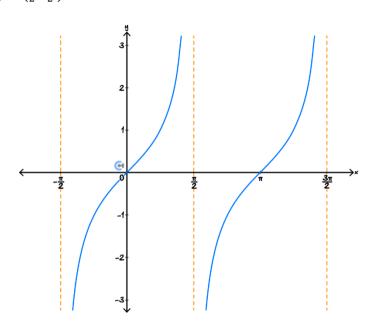
._____

a. Show that $(2x - 1)(4x^2 + 2x - 1) = 8x^3 - 4x + 1$.

b. Show that $\frac{\tan^2(x)+1}{\tan^2(x)-1} = \frac{1}{1-2\cos^2(x)}$.

VCE Methods ¾ Questions? Message +61 440 138 726

c.	Hence, using the previous two results, solve the equation:				
	$\frac{\tan^2(x)+1}{\tan^2(x)-1} = 4\cos(x) \text{ for } 0 \le x \le \frac{\pi}{2}.$				
	You may use the fact that $\cos^{-1}\left(\frac{\sqrt{5}-1}{4}\right) = \frac{2\pi}{5}$.				


Space for Personal Notes

Sub-Section: Exam 2 Questions

Question 12

The graph of $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\frac{3\pi}{2}\right)\to\mathbb{R}$, where $f(x)=\tan(x)$ is shown below.

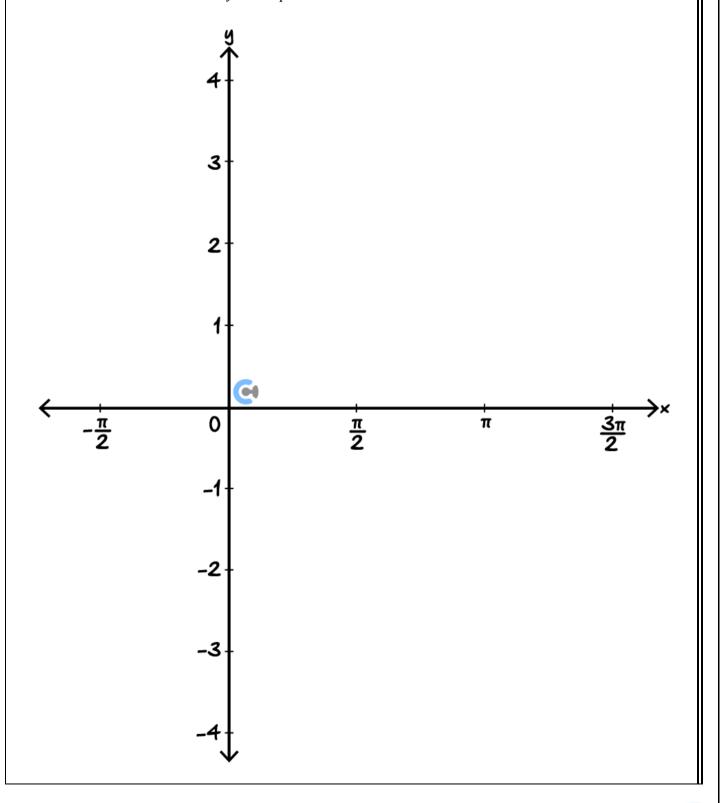
i. Find $f'\left(\frac{\pi}{4}\right)$.

ii. Find the equation of the **normal** to the graph of y = f(x) at the point where $x = \frac{\pi}{4}$.

iii. Sketch the graph of this normal on the axes above. Give the exact axis intercepts.

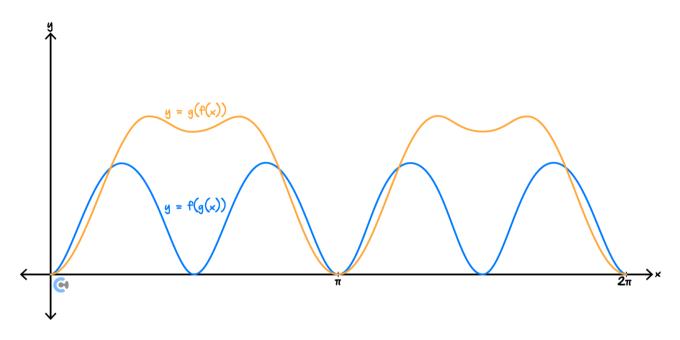
b. Find the exact values of $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ such that $f'(x) = f'\left(\frac{\pi}{4}\right)$.

c. Let g(x) = f(x - a). Find the exact value of $a \in (-1, 1)$ such that g(1) = 1.


d. Let $h: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \to \mathbb{R}$, $h(x) = \sin(x) + \tan(x) + 2$.

i. Find h'(x).

ii. Solve the equation h'(x) = 0 for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$. (Give exact values.)



- **e.** Sketch the graph of y = h(x) on the axes below.
 - Give the exact coordinates of any stationary points.
 - Label each asymptote with its equation.
 - Give the exact value of the *y*-intercept.

The graph below shows the compositions $g \circ f$ and $f \circ g$, where $f(x) = \sin^2(x)$ and $g(x) = \sin(2x)$.

a.

i. The graph of $y = (g \circ f)(x)$ has a local maximum whose x-value lies in the interval $\left[0, \frac{\pi}{2}\right]$.

Find the coordinates of this local maximum, correct to one decimal place.

ii. State the range of $g \circ f$ for $x \in [1, 2]$. Give your answers correct to one decimal place.

i.	State the period of $f \circ g$.
ii.	Find the derivative of $f \circ g$.
iii.	Hence, find two equations that when solved give the x coordinates for turning points of $f \circ g$.
iv.	Hence, find the <i>x</i> -values of the stationary points of $f \circ g$ where $x \in [0, \pi]$.
v.	Find the range of $f \circ g$ where $x \in [0, 2\pi]$.

VCE Methods ¾ Questions? Message +61 440 138 726

•	c. Let $f_1: (-\pi, 0) \to \mathbb{R}, f_1(x) = \sin^2(x)$.					
	Find all values of x in the interval $(0, 2\pi)$ for which the composition $f_1 \circ g$ is defined.					

Space for Personal Notes		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

