CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Circular Functions II [3.3]

Workbook

Outline:

Advanced Trigonometric Algebra

Pg 2-10

- Recap of Particular & General Solutions
- General Solutions with Domain Restrictions
- Hidden Quadratics

Graphs of Sine and Cosine

Pg 11-22

- Understanding the Shape
- Graphing Sine and Cosine Functions
- Finding the Rule

Graphs of Tangent

Pg 23-28

- Understanding Tangent Graphs
- Graphing Tangent Functions

Fraction of Period

Pg 29-30

Fraction of Period

Learning Objectives:

- MM34 [3.3.1] Solve Advanced Trigonometric Equations
- MM34 [3.3.2] Graph Sine, Cosine and Tangent Functions
- MM34 [3.3.3] Fraction of Periods

Section A: Advanced Trigonometric Algebra

Sub-Section: Recap of Particular & General Solutions

REMINDER: Particular Solutions

- Solving trigonometric equations for finite solutions.
- Steps:
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add and subtract the period to find all other solutions in the domain.

0

REMINDER: General Solutions

- Finding infinitely many solutions to a trigonometric equation.
- Steps:
 - 1. Make the trigonometric function the subject.
 - **2.** Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add $period \cdot n$ where $n \in Z$.

Question 1 Walkthrough.

Find the solutions to the following equation:

$$2\sin\left(2x + \frac{\pi}{3}\right) - 1 = 0 \text{ for } x \in [0, 2\pi]$$

Question 2

Find the solutions to the following equation:

$$\sqrt{2}\cos\left(2x - \frac{\pi}{4}\right) - 1 = 0 \text{ for } x \in [0, 2\pi]$$

Question 3 Walkthrough.

Find the general solutions to the following equation:

$$2\cos\left(3x - \frac{\pi}{3}\right) = 2$$

Question 4

Find the general solutions to the following equation:

$$4\sin\left(2x + \frac{\pi}{6}\right) - 2 = 0$$

Question 5

Find the general solutions to the following equation:

$$2\tan\left(2x - \frac{\pi}{6}\right) - 2\sqrt{3} = 0$$

NOTE: The period of tan is $\frac{\pi}{n}$.

<u>Discussion:</u> What is the main difference between the general and particular solution questions?

Sub-Section: General Solutions with Domain Restrictions

Misconception

"When there is a domain restriction, we always get particular solutions"

TRUTH: If the domain restriction has either ∞ or $-\infty$, we can still have general solutions

Question 6 Walkthrough.

Solve for the following trigonometric equation.

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \text{ for } x \ge 0$$

General Solution with Domain Restriction

E.g.,
$$\operatorname{trig}\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$$
 for $x\geq 0$

- We can have infinite solutions for restricted domains.
- The value of *n* is also restricted.

Your Turn!

Question 7

Solve for the following trigonometric equation.

$$\cos\left(2x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \text{ for } x < 0$$

NOTE: This was assessed in a VCAA exam!

Sub-Section: Hidden Quadratics

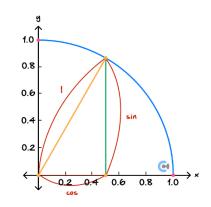
Let's Have a Look at Hidden Quadratics for Circular Functions!

Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

Question 8 Walkthrough.

Solve the following for the values of x.


$$\sin^2\left(x + \frac{\pi}{3}\right) + \sin\left(x + \frac{\pi}{3}\right) = 2, 0 \le x \le 3\pi$$

Let A = f(x)

NOTE: \sin and \cos are between -1 and 1.

REMINDER: Pythagorean Identity

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Can be used for finding one trigonometry function by using the other.

Active Recall: Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

7

Your Turn!

Question 9

Solve the following for the values of x.

$$-2\sin^2(2x) + 3\cos(2x) = 0$$

TIP: $\sin^2(\theta) = 1 - \cos^2(\theta)$

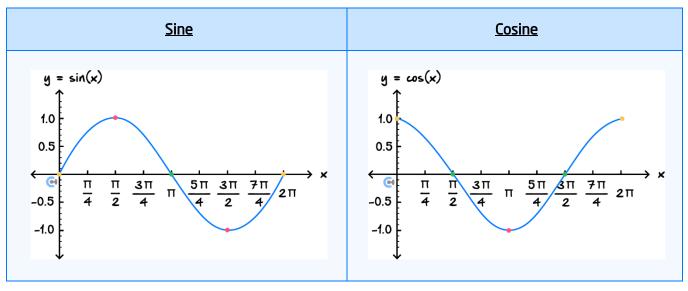
Section B: Graphs of Sine and Cosine

Sub-Section: Understanding the Shape

What does a sine and cosine graph look like?

Exploration: Graph of Sine and Cosine

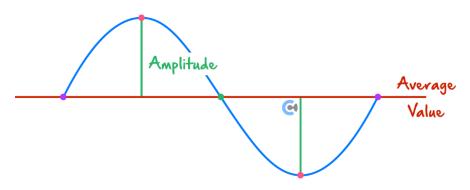
Scan the following QR code on your device!



Sine and Cosine Graphs

<u>Discussion:</u> Is cos(x) an even function or odd function. What about sin(x)?

<u>Discussion:</u> What does $\sin\left(\frac{\pi}{2} + x\right)$ equal to? So how can we translate sin function to cosine function?



Sub-Section: Graphing Sine and Cosine Functions

Definition

Amplitude, Period and Average Value

For
$$y = A\sin/\cos(nx + b) + k$$

Consider the sign of our graph

Amplitude =
$$|A|$$

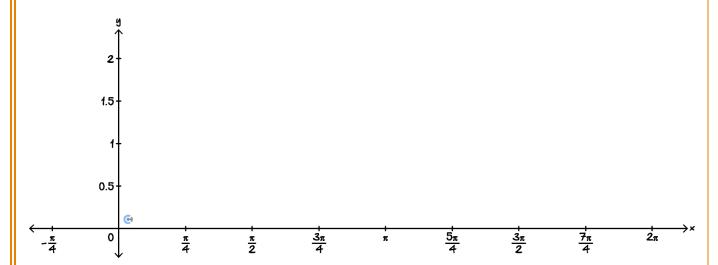
$$\mathsf{Period} = \frac{2\pi}{n}$$

Average Value = k

Question 10

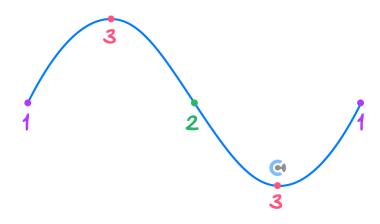
Identify the amplitude, period and average value of the following functions:

a.
$$f(x) = 2\sin(\frac{\pi}{3} - 3x) + 1.$$


b.
$$g(x) = -3\cos(2x+3) - 4$$
.

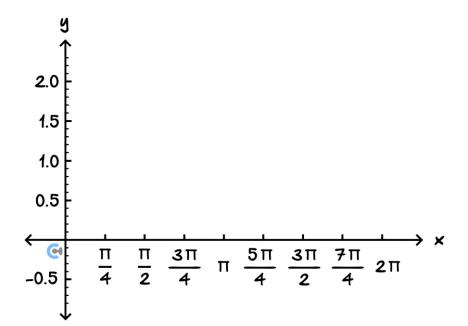
Exploration: Graphing of sin and cos Functions

Let's sketch $\sin(2x + \pi) + 1$ on the axes below!


- 1. Identify, Amplitude, Period, Mean Value and Positive/Negative Shape.
- 2. Create a "mini-version" of the graph you are about to draw.

- **3.** Start plotting the function from when the angle = 0. Why?
 - It allows us to always sketch the graph from the ______
- **4.** Draw the start and end of the periods, and plot the halves (turning points).
- **5.** Find any x-intercepts.
- **6.** Join all the points!

Graphing of sin and cos Functions


- 1. Identify, Amplitude, Period, Mean Value and Positive/Negative Shape.
- 2. Create a "mini-version" of the graph you are about to draw.
- **3.** Start plotting the function from when the angle = 0.
- 4. Draw the start and end of the periods, and plot the halves (turning points).
- **5.** Find any x-intercepts.
- **6.** Join all the points!

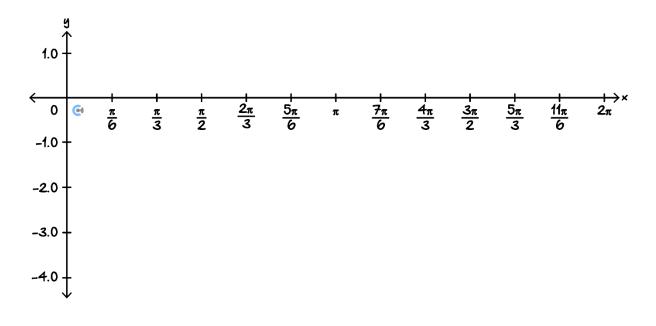
Question 11 Walkthrough.

Sketch the graph of $f(x) = -\sin(2x) + 1$ for $x \in [0, 2\pi]$ on the axes below, labelling all intercepts and endpoints with their coordinates.

Active Recall: Graphing of sin and cos Functions

S

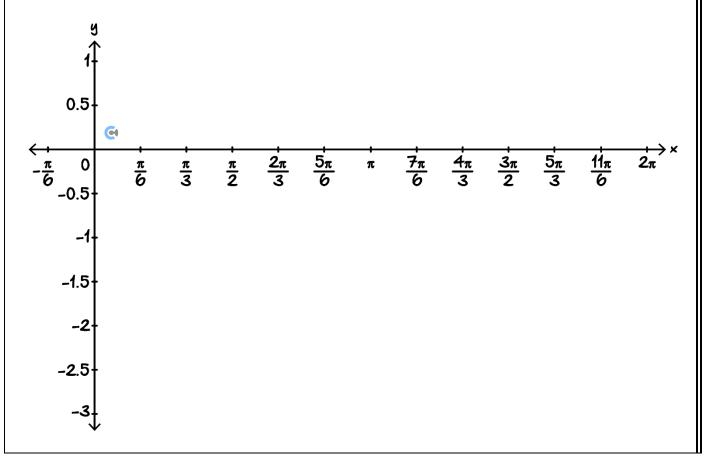
- 1. Identify:_____
- 2. Create a "mini-version" of the graph you are about to draw.
- **3.** Start plotting the function from when the angle = ____
- **4.** Draw the start and end of the periods, and plot the halves (turning points).
- **5.** Find any______.
- **6.** Join all the points!



Question 12

Sketch the following on the axes below, labelling all intercepts, endpoints, and turning points with their coordinates.

$$y = 2\sin\left(2\left(x - \frac{\pi}{3}\right)\right) - \sqrt{3} \text{ for } x \in [0, 2\pi]$$



Question 13

Sketch the following on the axes below, labelling all intercepts, endpoints, and turning points with their coordinates.

$$y = 2\cos\left(2x + \frac{\pi}{3}\right) - 1 \text{ for } x \in [0, 2\pi]$$

Sub-Section: Finding the Rule

Finding the Rule

Amplitude (A) =
$$\frac{max-min}{2}$$

Average (k) =
$$\frac{max + min}{2}$$

Question 14 Walkthrough.

A function with rule $y = A \sin(nt) + b$ where A > 0 has a range [-5,3] and period 4. Find A, n and b.

TIP: Graphing helps!

Active Recall: Finding the Rule

Amplitude (*A*) =_____

Average (k) =_____

Your Turn!

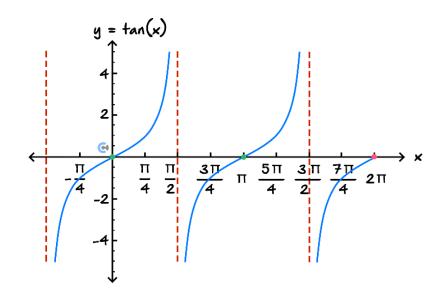
Question 15

A function with rule $y = A\cos(nt + \pi) + b$ where A < 0 has a range [-5,7] and period 3. Find A, n and b.

Section C: Graphs of Tangent

Sub-Section: Understanding Tangent Graphs

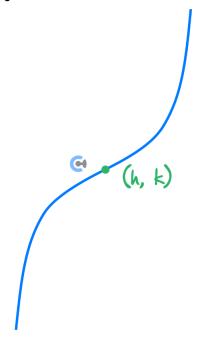
What does the tangent graph look like?


Exploration: Graph of Tangents

Scan the QR code below on your device!

Graph of Tangent

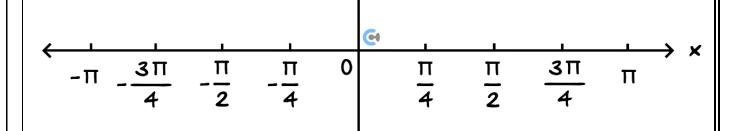
Sub-Section: Graphing Tangent Functions



Steps for Sketching tan Functions

- 1. Identify:
 - The period = $\frac{\pi}{n}$.
- 2. Find the vertical asymptotes by solving for angle $=\frac{\pi}{2}$. Find other vertical asymptotes within the domain by adding the period to answer from the previous step.
 - Geometric For instance, for $\tan \left(2x \frac{\pi}{3}\right)$, solve $2x \frac{\pi}{3} = \frac{\pi}{2}$ for x.
- **3.** Plot the inflection point (h, k) (Midpoint of the two vertical asymptotes.).
 - \bullet x-value of inflection point = x-value which makes angle = 0.

eg:
$$tan(x-h)+k$$



- **4.** Find any x -intercepts.
- **5.** Sketch a "cubic-like" shape.

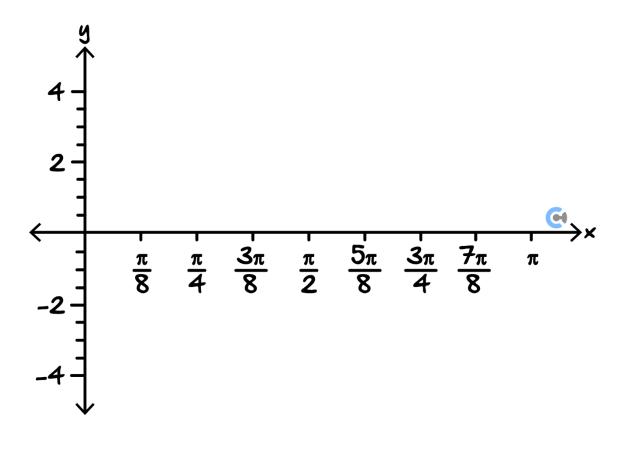
Question 16 Walkthrough.

Sketch the graph of $y = 3 \tan(2x)$ for $x \in [-\pi, \pi]$.

Active Recall: Steps for Sketching tan Functions

1.	Identify:
2.	Find the vertical asymptotes by solving for angle $=$ Find other vertical asymptotes within the domain by adding the period to answer from the previous step.
3.	Plot the inflection point (h, k) (Midpoint of the two).
	x-value of inflection point = x -value which makes angle = 0 .
	$\upgain y$ -value of inflection point = vertical translation of the function.
4.	Find any
5.	Sketch a shape.

Space for Personal Note:

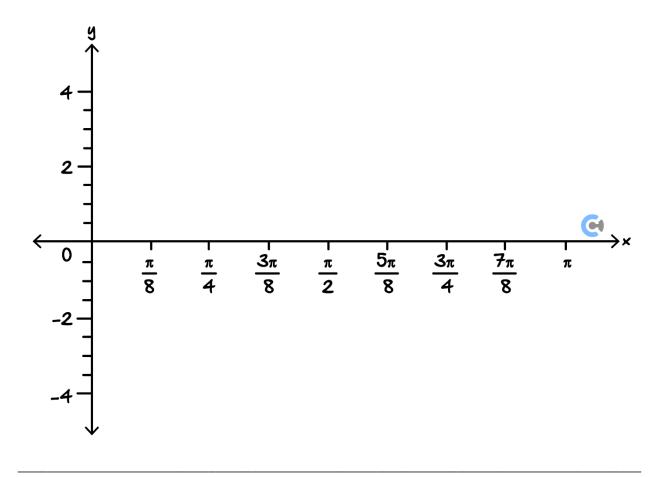


Your Turn!

Question 17

Sketch the following on the axes below, labelling all intercepts, points of inflection, and endpoints with their coordinates, and all asymptotes with their equations.

$$y = \tan\left(2x + \frac{\pi}{2}\right) + 1 \text{ for } x \in (0, \pi)$$



Question 18

Sketch the following on the axes below, labelling all intercepts, points of inflection, and endpoints with their coordinates, and all asymptotes with their equations.

$$f:[0,\pi] \to \mathbb{R}, f(x) = -3\tan(\pi + 4x) + \sqrt{3}$$

Section D: Fraction of Period

Sub-Section: Fraction of Period

Definition: Fraction of Period

$$Fraction of Period = \frac{Duration}{Period}$$

$$\%$$
 of $Period = \frac{Duration}{Period} \times 100\%$

Question 19 Walkthrough.

The population of dogs in a certain household is modelled by P(t).

$$P(t) = 5 - 2\cos\left(\frac{\pi}{4}t\right)$$

Where P(t) is the number of dogs t years since 2024. Find the fraction of time where the population is above 4.

NOTE: Always sketch the function to find the duration!

Active Recall: Fraction of Period

Fraction of Period =_____

% of Period = \times 100%

Question 20

The population of cats in a certain household is modelled by P(t).

$$P(t) = 10 - 4\sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right)$$

Where P(t) is the number of cats t years since 2024.

Find the fraction of time where the population is below 12.

Contour Check

□ Learning Objective: [3.3.1] - Solve Advanced trigonometric equations

Key Takeaways

- General Solutions with domain restriction
 - O Steps:
 - 1. Make the trigonometric function the subject.
 - 2. Find the necessary _____ for one period.
 - **3.** Solve for *x* by equating the necessary angles to the _____ of the trigonometric functions.
 - **4.** Add $period \cdot n$ where the ______ of n is appropriately restricted.
- Hidden Quadratics

$$af(x)^2 + bf(x) + c = 0$$

□ <u>Learning Objective</u>: [3.3.2] – Graph sine, cosine and tangent functions

Key Takeaways

Amplitude, Period and Average Value

For
$$y = A\sin/\cos(nx + b) + k$$

- ☐ Graphing of sin and cos Functions
 - O Steps:
 - 1. Identify,
 - 2. Create a "mini version" of the graph you are about to draw.
 - **3.** Start plotting the function from when the angle = _____.
 - 4. Draw the start and end of the periods, and plot the halves (turning points).
 - 5. Find any______
 - **6.** Join all the points!

Steps for Sketching tan Functions			
1. Identify			
☐ The period =			
 Find the vertical asymptotes by solving for angle = Find other vertical asymptotes within the domain by adding the period to answer from the previous step. 			
3. Plot the inflection point (h, k) (Midpoint of the two).			
\square x-value of inflection point = x-value which makes angle = 0.			
\square y-value of inflection point = vertical translation of the function.			
4. Find any			
5. Sketch a shape.			
Learning Objective: [3.3.3] - Fraction of Periods			
Key Takeaways			
□ Fraction of Period			
Fraction of Period =			
% of Period =×100%			

CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After-school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next.). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

