

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Circular Functions II [3.3]

Test Solutions

30 Marks. 1 Minute Reading. 24 Minutes Writing.

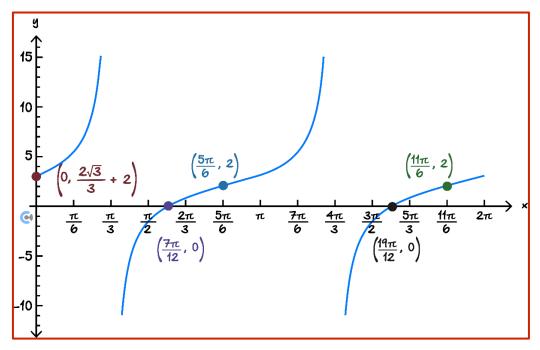
Results:

Test Questions	/ 22	
Extension Questions	/8	

Section A: Test Questions (22 Marks)

Question 1 (3 marks)

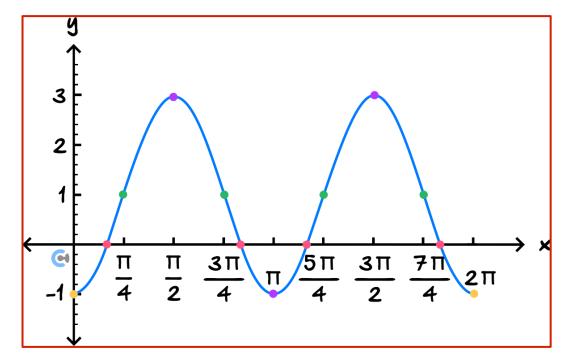
Tick whether the following statements are **true** or **false**.


Statement		True	False
a.	For sin and cos functions, the amplitude is always the <i>coefficient</i> of sin and cos. False. It's the size of the coefficient of sin and cos.	coefficient.	✓
b.	We should start sketching the function when the angle is equal to 0.	✓	
c.	The y -value of the inflection of the tangent graph is always given by the vertical translation of the function.	✓	
d.	To find the vertical asymptote of any tangent function, we simply let the angle equal to $\frac{\pi}{2}$.	✓	
e.	For the sum of two trigonometric functions, the period of the overall sum is equal to the larger period.		✓
f.	$\sin(x) \ge \frac{1}{2} \text{ for } \frac{1}{3} \text{ of its period.}$	✓	

Space for Personal Notes

Question 2 (3 marks)

Sketch the graph of $f(x) = 2 \tan \left(x + \frac{\pi}{6}\right) + 2$ for $x \in [0, 2\pi]$ on the axes below, labelling all asymptotes, intercepts and endpoints with their coordinates.


Asymptotes: $x = \frac{\pi}{3}, \frac{4\pi}{3}$

Space for Personal Notes

Question 3 (7 marks)

a. Sketch the graph of $f(x) = -2\cos(2x) + 1$ for $x \in [0, 2\pi]$ on the axes below, labelling all intercepts and endpoints with their coordinates. (3 marks)

$$In[5]:= Solve[-2 Cos[2 x] + 1 == 0 && 0 \le x \le 2 Pi]$$

$$Out[5]= \left\{ \left\{ x \to \frac{\pi}{6} \right\}, \left\{ x \to \frac{5 \pi}{6} \right\}, \left\{ x \to \frac{7 \pi}{6} \right\}, \left\{ x \to \frac{11 \pi}{6} \right\} \right\}$$

b. Solve $f(x) \ge 1$ for $x \in [0, 2\pi]$. (2 marks)

Reduce
$$[-2 \cos [2 x] + 1 \ge 1 \&\& 0 \le x \le 2 \pi]$$

$$\frac{\pi}{4} \le x \le \frac{3 \pi}{4} \mid |\frac{5 \pi}{4} \le x \le \frac{7 \pi}{4}$$

Consider a function h(x) = f(x) + k.

c. Solve for the value(s) of k such that the solutions of h(x) = 0 have a constant interval between them. (2 marks) k = 1, -1, -3

Space for Personal Notes

Question 4 (9 marks) The population of foxes in a certain forest varies according to the rule: $P(t) = 50 - 30\cos\left(\frac{\pi}{2}(t-2)\right)$ Where P(t) is the number of foxes t years after 2024. **a.** Find the period and amplitude of this function. (2 marks) Period = 4 years and amplitude = 30. **b.** Find the maximum and minimum number of foxes in the forest. (2 marks) Minimum = 20Maximum = 80

c. After how many years is the population of foxes a minimum in the first 5 years? (2 marks)

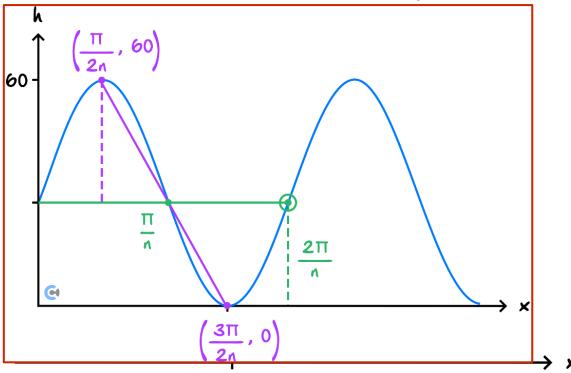
Solve P(t) = 20 over [0,5]

t = 2.

After 2 years.

VCE Methods ¾ Questions? Message +61 440 138 726

Foxes are declared a vulnerable species if their population drops below 35. **d.** Find the percentage of time when the foxes are declared as vulnerable species. (3 marks)


Fraction of time $= \frac{8}{3} - \frac{4}{3} = \frac{1}{3}$ $= \frac{100}{3} \%$

Space	for	Personal	Notes
Space		· CISCIIGI	

Section B: Extension Questions (8 Marks)

Question 5 (8 marks) Tech-Active.

The side view of a roller coaster is shown below, where h is the vertical height in m and x is the horizontal distance in m. The start of the roller coaster is at (0,30) and its maximum height reaches 60 m.

The roller coaster can be modelled by the equation $h(x) = a \sin(nx) + b$ where $a, b, n \in \mathbb{R}$.

a. Find the values of A, B. (2 marks)

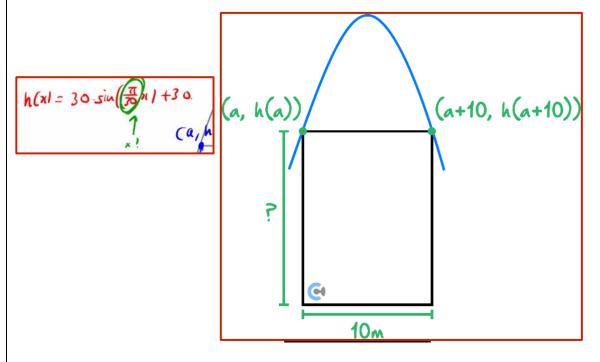
A = 30 B = 30

The average rate of change formula is given by $\frac{y_2-y_1}{x_2-x_1}$.

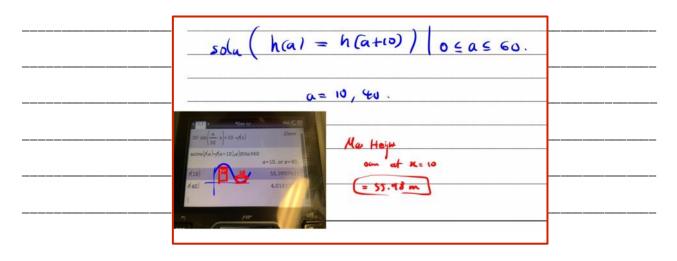
b.

i. Find the average rate of change between the first highest point and the first lowest point of the rollercoaster. (2 marks)

 $\frac{60 - 0}{\frac{\pi}{2\pi} - \frac{3\pi}{2\pi}} = \frac{60}{-\frac{\pi}{\pi}} = \frac{-60\pi}{\pi}$


ii. Find the largest possible value of n if, due to safety regulations, the average rate of change between the peaks is not to exceed a magnitude of 2. (2 marks)

ii. Find the la	argest possible value of n if, of to exceed a magnitude of 2	due to safety regulat	ions, the average rate of ch	ange between the
	(Au	π	77	2
	<u></u>	∠ 2	(A 2 -	73)
	n ≤	X 20	$(a = \frac{\pi}{30})$	



Use the largest value of n obtained from part **b. ii.** for the questions below.

It is found that the roller coaster needs support with a width of 10 m.

c. What is the maximum height of the support? Give your answer correct to 2 decimal places. (2 marks)

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

