

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Circular Functions II [3.3]

**Homework Solutions** 

### Admin Info & Homework Outline:

| Student Name                |               |
|-----------------------------|---------------|
| Questions You Need Help For |               |
| Compulsory Questions        | Pg 2- Pg 22   |
| Supplementary Questions     | Pg 23 - Pg 38 |



## Section A: Compulsory Questions



## <u>Sub-Section [3.3.1]</u>: Solve Advanced Trigonometric Equations

#### **Question 1**



Find the general solution to the following trigonometric equations over the specified domain.

**a.**  $2\sin(x) - 1 = 0$ , for  $x \ge 0$ .

$$\sin(x) = \frac{1}{2}$$
.  
 $x = \frac{\pi}{6} + 2n\pi \text{ or } x = \frac{5\pi}{6} + 2n\pi, \text{ where } n \in \mathbb{Z}_{\geq 0}$ 

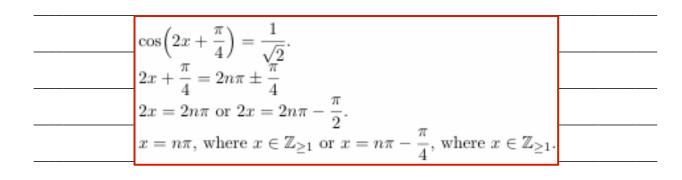
**b.**  $\tan(2x) = \sqrt{3}$ , for x < 0.

$$2x = \frac{\pi}{3} + n\pi.$$

$$x = \frac{\pi}{6} - \frac{n\pi}{2}, \text{ where } n \in \mathbb{Z}_{\geq 1}$$



**c.** 
$$\sqrt{2}\cos\left(2\pi + \frac{\pi}{4}\right) = 1$$
, for  $x > 0$ .



#### Question 2



Solve the following trigonometric equations over the specified domain.

**a.**  $2\cos^2(x) - 3\cos(x) + 1 = 0$ , for  $0 \le x \le 2\pi$ .

| Let $cos(x) = a$ . We solve                                         |
|---------------------------------------------------------------------|
| <br>$2a^{2} - 3a + 1 = 0$ $(2a - 1)(a - 1) = 0$                     |
| (2a-1)(a-1) = 0                                                     |
| $cos(x) = \frac{1}{2}$ or $cos(x) = 1$ and $x \in [0, 2\pi]$ . Thus |
| $x = 0, \frac{\pi}{3}, \frac{5\pi}{3}, 2\pi$                        |



**b.**  $\sin^2(2x) + \sin(2x) - 2 = 0$ , for  $x \in \mathbb{R}$ .

Let sin(2x) = a. Then we have  $a^2 + a - 2 = 0$ (a + 2)(a - 1) = 0a = -2, a = 1

So due to domain and range we only solve  $\sin(2x)=1$ . Thus  $2x=\frac{\pi}{2}+2n\pi$   $x=\frac{\pi}{4}+n\pi, n\in\mathbb{Z}.$ 

c.  $3\sin^2(x) - 6\sin(x) - \cos^2(x) + 3 = 0$ , for  $0 \le x \le 2\pi$ .

Use  $\cos^2(x) = 1 - \sin^2(x)$  to rewrite the equation as

$$4\sin^2(x) - 6\sin(x) + 2 = 0$$

Let  $a = \sin(x)$  then

$$4a^2 - 6a + 2 = 0$$

$$2a^2 - 3a + 1 = 0$$

$$(2a - 1)(a - 1) = 0$$

So  $sin(x) = \frac{1}{2}$  or sin(x) = 1. Thus

$$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$

## **C**ONTOUREDUCATION

#### **Question 3**



Find the value(s) of k such that  $4\sin^2(x) + k\cos(x) - 2 = 0$  has 2 solutions in the interval  $[0, \pi]$ .

Use Pythagorean identity to write  $4 - 4\cos^2(x) + k\cos(x) - 2 = 0$ . Now let  $a = \cos(x)$  we have that

$$-4a^{2} + ka + 2 = 0$$
$$4a^{2} - ka - 2 = 0$$

$$a = \frac{k \pm \sqrt{k^2 + 32}}{8}$$

The period of our function is  $2\pi$ . The range of  $\cos(x)$  is [-1,1], and  $\cos(x) = b$  for  $-1 \le b \le 1$  will only have one solution in the interval  $[0,\pi]$ . Thus we will have two solutions in  $[0,\pi]$  if both of the following are satisfied:

$$-1 \le \frac{k + \sqrt{k^2 + 32}}{8} \le 1 \tag{1}$$

$$-1 \le \frac{k - \sqrt{k^2 + 32}}{8} \le 1\tag{2}$$

Inequality (1):

$$-8 \le k + \sqrt{k^2 + 32} \le 8$$
  
 $\implies \sqrt{k^2 + 32} \le 8 - k$   
 $k^2 + 32 \le k^2 - 16k + 64$   
 $16k \le 32$   
 $k \le 2$ 

Inequality (2):

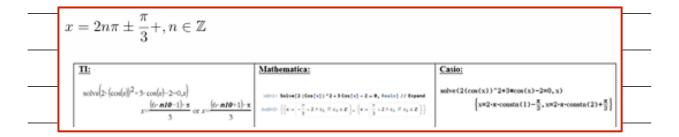
$$-8 \le k - \sqrt{k^2 + 32} \le 8$$
 
$$\implies -\sqrt{k^2 + 32} \ge -8 - k$$
 
$$k^2 + 32 \le k^2 + 16k + 64$$
 
$$0 \le 16k + 32$$
 
$$k \ge -2$$

Combining we have that  $-2 \le k \le 2$ . With technology access we can use sliders to check this!



#### **Question 4 Tech-Active.**

**a.** Find the general solution to the equation  $2\cos^2(x) + 3\cos(x) - 2 = 0$ .



**b.** Hence, find the solutions to  $2\cos^2(x) + 3\cos(x) - 2 = 0$  for  $x \in [0, 2\pi]$ .





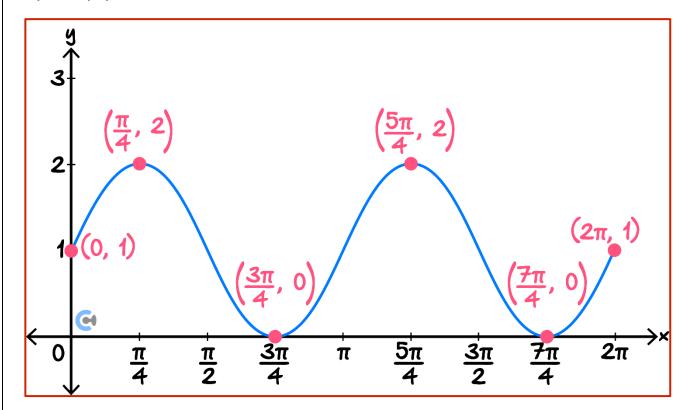


## Sub-Section [3.3.2]: Graph Sine, Cosine, and Tangent Functions

#### **Question 5**

Sketch the graphs of the functions over the specified domain on the given axes. Label all axes intercepts, turning points and endpoints with their coordinates, and asymptotes with their equations.

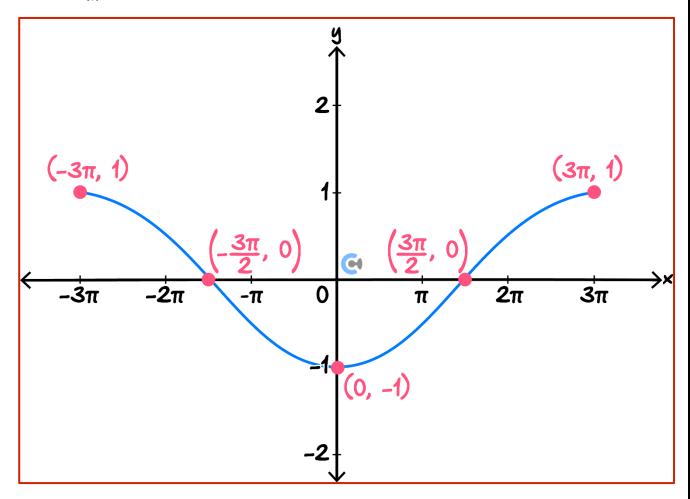
**a.**  $y = \sin(2x) + 1$  for  $0 \le x \le 2\pi$ .



$$\sin(2x) = -1 \implies 2x = \frac{3\pi}{2} \implies x = \frac{3\pi}{4}$$
. Period is  $\pi$ .



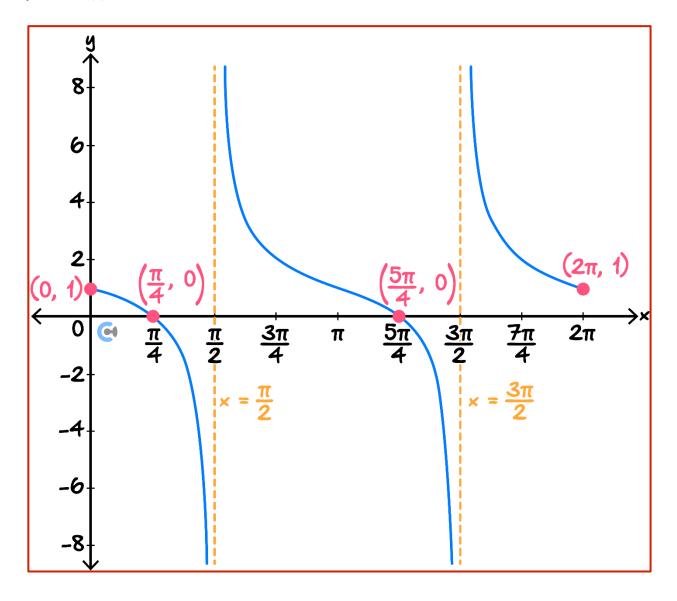
**b.**  $y = \cos\left(\frac{x}{3}\right)$  for  $-3\pi \le x \le 3\pi$ .



$$\frac{x}{3} = \frac{\pi}{2} \implies x = \frac{3\pi}{2}$$
 is one intercept. Period is  $6\pi$ 



c.  $y = -\tan(x) + 1$  for  $0 \le x \le 2\pi$ .



Asymptote base angle  $\frac{\pi}{2}$ , period =  $\pi$ , x-intercept base angle  $\frac{\pi}{4}$ 

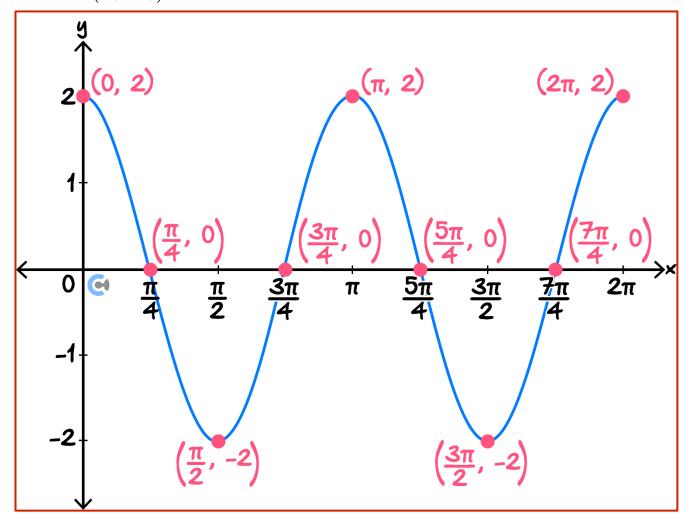


#### **Question 6**



Sketch the graphs of the functions over the specified domain on the given axes. Label all axes intercepts, turning points and endpoints with their coordinates and asymptotes with their equations.

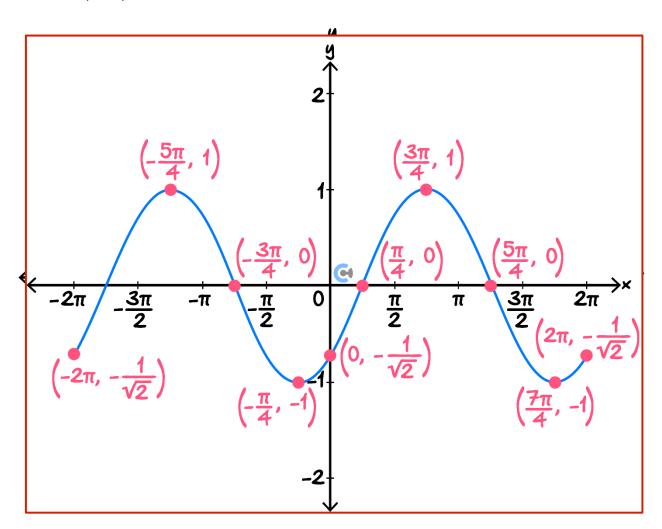
**a.** 
$$y = 2\sin\left(2\left(x + \frac{\pi}{4}\right)\right)$$
 for  $0 \le x \le 2\pi$ .



$$x = \frac{\pi}{4}, \frac{3\pi}{4}$$
 base angles for x- intercepts. Period =  $\pi$ .

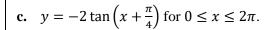


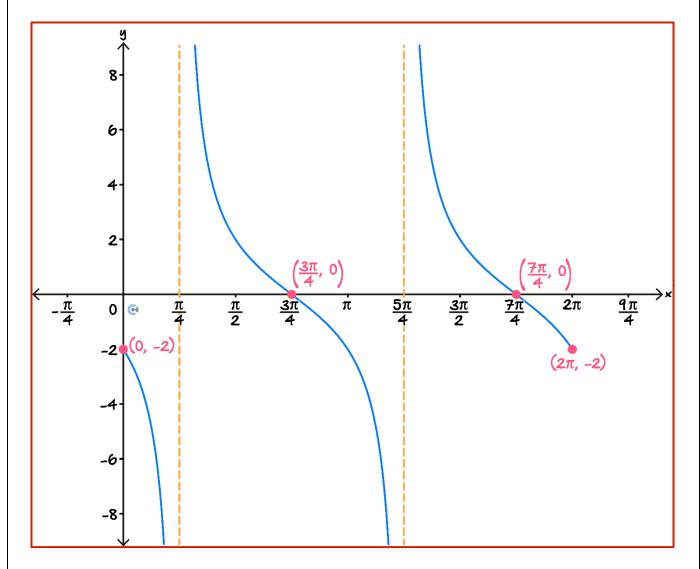
**b.**  $y = -\cos\left(x + \frac{\pi}{4}\right)$  for  $-2\pi \le x \le 2\pi$ .



$$x + \frac{\pi}{4} = \frac{\pi}{2}, \frac{3\pi}{2} \implies x = \frac{\pi}{4}, \frac{5\pi}{4}.$$
 Period =  $2\pi$ .







Period =  $\pi$ . Asymptote base angle =  $\frac{\pi}{4}$ . x-intercept base angle =  $\frac{3\pi}{4}$ 



#### **Question 7**



Sketch the graphs of the functions over the specified domain on the given axes. Label all axes intercepts and endpoints with their coordinates and asymptotes with their equation.

**a.** 
$$y = -2\sin\left(2x + \frac{\pi}{6}\right) + 1 \text{ for } -\pi \le x \le 2\pi.$$



$$x = 0, x = \frac{\pi}{3}$$
 base angles for x-intercepts. Period =  $\pi$ .

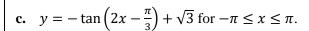


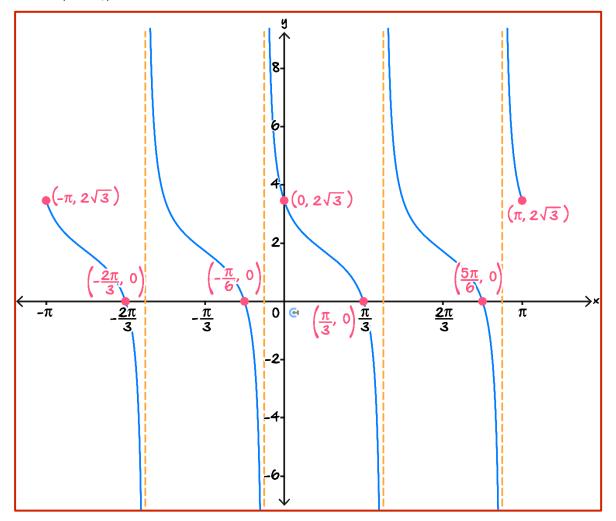
**b.** 
$$y = 2\cos\left(2x - \frac{\pi}{4}\right) - 1, x \in [-\pi, 2\pi].$$



$$2x - \frac{\pi}{4} = -\frac{\pi}{3}, \frac{\pi}{3} \implies x = -\frac{\pi}{24}, \frac{7\pi}{24}. \text{ Period} = \pi.$$





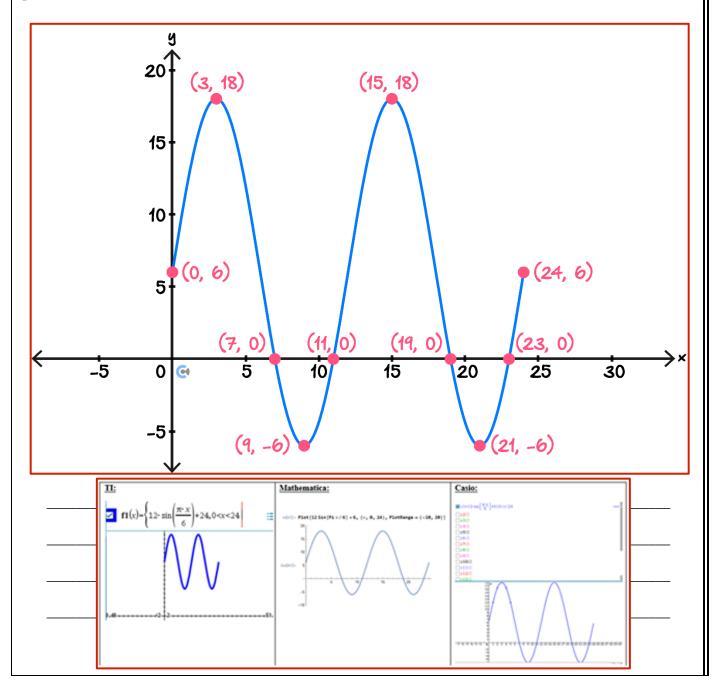


Period = 
$$\frac{\pi}{2}$$
. Asymptotes  $x = -\frac{\pi}{12} + \frac{n\pi}{2}$ . x-intercepts  $\frac{\pi}{3} + \frac{n\pi}{2}$ 



#### Question 8 Tech-Active.

Sketch the graph of  $y = 12 \sin\left(\frac{\pi x}{6}\right) + 6$  for  $x \in [0, 24]$  on the axes below. Label all axial intercepts and turning points with coordinates.





## Sub-Section [3.3.3]: Fraction of Periods



#### **Question 9**

The temperature of a lake throughout the year is modelled by T(t), where:

$$T(t) = 18 + 4\cos\left(\frac{\pi}{6}t\right)$$

Where T(t) represents the temperature (in degrees Celsius) of the lake at t months since January.

Find the fraction of the year during which the temperature is above 20°C.

We need to solve:

$$18 + 4\cos\left(\frac{\pi}{6}t\right) > 20$$

$$4\cos\left(\frac{\pi}{6}t\right) > 2$$

$$\cos\left(\frac{\pi}{6}t\right) > \frac{1}{2}.$$

Thus, solving for t if we have equality:

$$\frac{\pi}{6}t = \pm \frac{\pi}{3} + 2k\pi$$

$$t = \pm 2 + 12k, \quad k \in \mathbb{Z}.$$

Since cosine is positive in quadrants I and IV, the valid range satisfying  $\cos(\frac{\pi}{6}t) > \frac{1}{2}$  within one period is:

$$-2 < t < 2$$
.

The periodicity of the function is:

$$T=\frac{2\pi}{\frac{\pi}{6}}=12.$$

Within one year ( $0 \le t \le 12$ ), the valid range repeats at t = 12k, so the solution intervals are:

$$0 < t < 2$$
 and  $10 < t < 12$ .

Space for F

The total duration where T(t) > 20 is:

$$(2-0) + (12-10) = 4$$
 months.

The fraction of the year is:

$$\frac{4}{12} = \frac{1}{3}$$

Thus, the lake's temperature is above  $20^{\circ}$ C for  $\frac{1}{3}$  of the year.



#### **Question 10 Tech-Active.**



A research team is monitoring the depth of water in a tidal bay. The depth of the water, in metres, is modelled by the function:

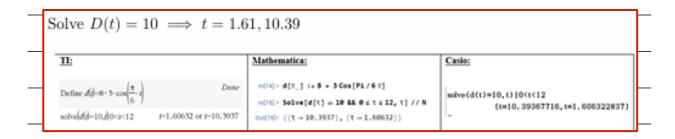
$$D(t) = 8 + 3\cos\left(\frac{\pi}{6}t\right)$$

Where D(t) represents the depth of the water t hours after midnight.

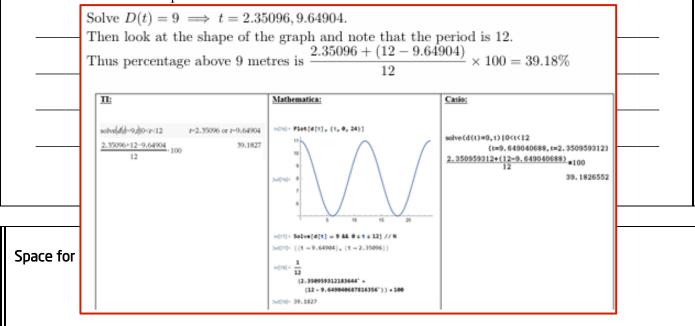
**a.** State the maximum and minimum depth of the water.

The maximum occurs when  $\cos x = 1$  and the minimum when  $\cos x = -1$ :  $D_{\max} = 8 + 3(1) = 11, \quad D_{\min} = 8 + 3(-1) = 5.$ The depth varies between 5m (low tide) and 11m (high tide).

**b.** Determine the first two times after midnight when the water reaches a depth of 10 metres. Give your answers in hours after midnight, correct to two decimal places.



**c.** Find the percentage of a full tidal cycle during which the water depth is above 9 metres. Give your answer correct to two decimal places.





#### Question 11 Tech-Active.



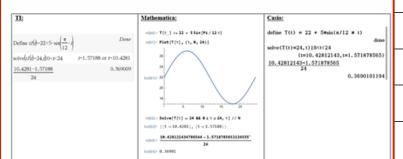
The temperature in a greenhouse fluctuates throughout the day and is modelled by the function:

$$T(t) = 22 + 5\sin\left(\frac{\pi}{12}t\right)$$

where T(t) represents the temperature in degrees Celsius, and t is the time in hours after midnight.

a. Find the fraction of a full day during which the temperature exceeds 24°C. Give your answer as a decimal

correct to three decimal places. Solve  $T(t) = 24 \implies t = 1.57, 10.42$ . Period is 24 and looking at a graph we see the fraction is  $\frac{10.42 - 2.57}{24} = 0.369$ .

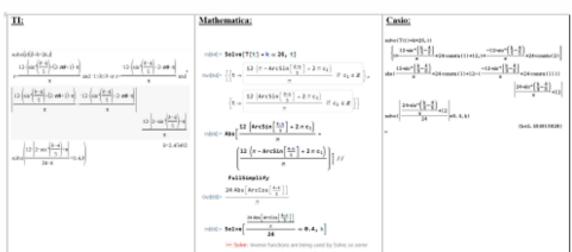


**b.** Find the value of k such that T(t) + k exceeds 26°C for exactly 40% of the time. Give your answer correct to two decimal places.

We find the distance between two solutions to T(t) + k = 26 in terms of k. Call this distance d, we then solve  $\frac{d}{24} = 0.4$  for k.

$$k = 2.45$$

**Space** 







### **Sub-Section:** Final Boss

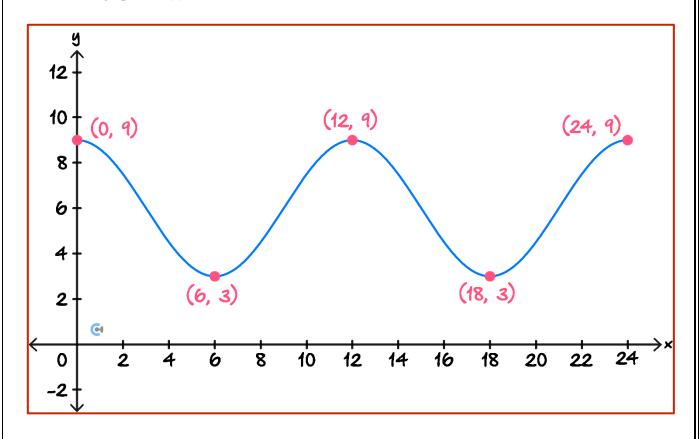
#### **Question 12**

The depth of water in a coastal bay varies throughout the day due to tidal motion. The depth of water, in metres, is modelled by the function:

$$D(t) = 6 + 3\cos\left(\frac{\pi}{6}t\right)$$

where *t* is the time in hours after midnight.

**a.** Sketch the graph of D(t) for  $0 \le t \le 24$ .



Period = 12, max= 9, min= 3. The graph oscillates between 3 and 9 meters, with key points at t = 0, 3, 6, 9, 12. **b.** Find the first two times after midnight when the water depth is exactly 7.5 metres.

| Solve $6 + 3\cos\left(\frac{\pi}{6}t\right) = 7.5$ . |
|------------------------------------------------------|
|                                                      |
|                                                      |

 $\cos\left(\frac{\pi}{6}t\right) = \frac{1}{2}$   $\frac{\pi}{6}t = \frac{\pi}{3}, \frac{5\pi}{3}$  t = 2, 10

Thus, the first two times are 2am and 10am.

**c.** Find the fraction of a full tidal cycle when the water depth is below 4.5 metres.

Solve  $6 + 3\cos\left(\frac{\pi}{6}t\right) = 5.5$ .  $\cos\left(\frac{\pi}{6}t\right) = -\frac{1}{2}$   $\frac{\pi}{6}t = \frac{2\pi}{3}, \frac{4\pi}{3}$  t = 4, 8.

By shape of graph below for  $\frac{8-4}{12} = \frac{1}{3}$  of the time.

**d.** The harbour can only accommodate boats when the water depth is at least 5.8 metres. Find the smallest vertical translation k such that D(t) + k ensures this condition is met for at least 75% of the tidal cycle.

Give an exact answer in the form  $\frac{a\sqrt{b}-c}{d}$ , for positive integers a, b, c, and d.

By looking at the shape of the graph and its symmetry we can deduce that this property will be satisfied if t=4.5 is a solution to the equation, because  $\frac{2\times4.5}{12}=75\%$ .

$$D(t) + k = 5.8$$

Now  $D(4.5) + k = 6 + 3\cos\left(\frac{3\pi}{4}\right) + k = 5.8$ . Thus

$$-3 \times \frac{1}{\sqrt{2}} + k = -\frac{1}{5}$$
 
$$k = \frac{3\sqrt{2}}{2} - \frac{2}{10}$$
 
$$k = \frac{15\sqrt{2} - 2}{10}$$



## Section B: Supplementary Questions



## Sub-Section [3.3.1]: Solve Advanced Trigonometric Equations

#### **Question 13**



Find the general solution to the following trigonometric equations over the specified domain.

**a.** 
$$\sin(2x) = \frac{\sqrt{3}}{2}$$
, for  $x \ge 0$ .

$$2x = \frac{\pi}{3} + 2n\pi \quad \text{or} \quad 2x = \frac{2\pi}{3} + 2n\pi$$
$$x = \frac{\pi}{6} + n\pi \quad \text{or} \quad x = \frac{\pi}{3} + n\pi, \quad n \in \mathbb{Z}_{\geq 0}$$

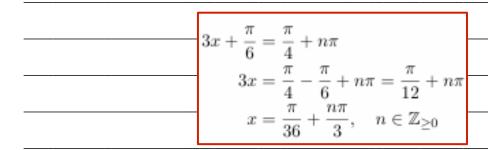
**b.** 
$$\cos\left(x - \frac{\pi}{3}\right) = -\frac{1}{2}$$
, for  $x < 0$ .

$$x - \frac{\pi}{3} = \frac{2\pi}{3} + 2n\pi \quad \text{or} \quad x - \frac{\pi}{3} = \frac{4\pi}{3} + 2n\pi$$

$$x = \pi - 2n\pi, n \in \mathbb{Z}_{\geq 1} \quad \text{or} \quad x = \frac{5\pi}{3} - 2n\pi, \quad n \in \mathbb{Z}_{\geq}$$



**c.** 
$$\tan \left( 3x + \frac{\pi}{6} \right) = 1$$
, for  $x > 0$ .



#### **Question 14**



Solve the following equations for  $x \in \mathbb{R}$ . Note that some solutions will need to be expressed in terms of inverse trigonometric functions.

**a.**  $4\sin^2(x) - 4\sin(x) + 1 = 0$ , for  $0 \le x \le 2\pi$ .

| Let $sin(x) = a$ , then:                                                |                                      |  |
|-------------------------------------------------------------------------|--------------------------------------|--|
|                                                                         | $4a^2 - 4a + 1 = 0$ $(2a - 1)^2 = 0$ |  |
|                                                                         | $(2a-1)^2 = 0$                       |  |
|                                                                         | $a = \frac{1}{2}$                    |  |
| So $sin(x) = \frac{1}{2}$ , hence $x = \frac{\pi}{6}, \frac{5\pi}{6}$ . |                                      |  |

 $x=n\pi\pm\frac{1}{2}\cos^{-1}\left(\frac{1}{3}\right), n\in\mathbb{Z}$ 

 $x = n\pi \pm \frac{\pi}{2}, n \in \mathbb{Z}$ 

**b.**  $3\cos^2(2x) + 2\cos(2x) - 1 = 0$ , for  $x \in \mathbb{R}$ .

Let 
$$a = \cos(2x)$$
, then:

$$3a^{2} + 2a - 1 = 0$$
$$(3a - 1)(a + 1) = 0$$

$$a = \frac{1}{3}, -1$$

So 
$$\cos(2x) = \frac{1}{3}, -1.$$

$$2x = 2n\pi \pm \cos^{-1}\left(\frac{1}{3}\right)$$

$$2x=2n\pi\pm\pi$$

**c.**  $\tan^2(x) - \tan(x) - 2 = 0$ , for  $0 \le x < 2\pi$ .

Let 
$$a = \tan(x)$$
, then:

$$a^2 - a - 2 = 0$$
  
 $(a - 2)(a + 1) = 0$ 

Thus all solutions are

$$a = 2, -1$$

So tan(x) = 2 or tan(x) = -1. Thus

$$x = \tan^{-1}(2), \quad x = \pi + \tan^{-1}(2) \quad (\text{for } \tan(x) = 2)$$

$$x=\frac{3\pi}{4},\quad x=\frac{7\pi}{4}\quad (\text{for }\tan(x)=-1)$$



#### **Question 15**



Find the value(s) of k such that the equation:

$$3\cos^2(x) + k\sin(x) - 1 = 0$$

has exactly two solutions in the interval  $[0, \pi]$ .

Use the identity  $\cos^2(x) = 1 - \sin^2(x)$ :

$$3(1 - \sin^2(x)) + k\sin(x) - 1 = 0$$
$$-3\sin^2(x) + k\sin(x) + 2 = 0.$$

Let  $a = \sin(x)$ , then:

$$3a^2 - ka - 2 = 0.$$

Solutions for a are:

$$a = \frac{k \pm \sqrt{k^2 + 24}}{6}.$$

Now note that  $\sin(x) = b$  will have two solutions in  $[0, \pi]$  only if 0 < b < 1.

The root  $a = \frac{k - \sqrt{k^2 + 24}}{6} < 0$  so will not contribute any solutions in the interval  $[0, \pi]$ .

Thus we just require that

$$0<\frac{k+\sqrt{k^2+24}}{6}<1.$$

Solving:

$$k + \sqrt{k^2 + 24} < 6$$

$$\sqrt{k^2 + 24} < 6 - k$$

$$k^2 + 24 < (6 - k)^2 = 36 - 12k + k^2$$

$$24 < 36 - 12k$$

$$k < 1$$

Thus our answer is k < 1. With technology access we can use sliders to check this!



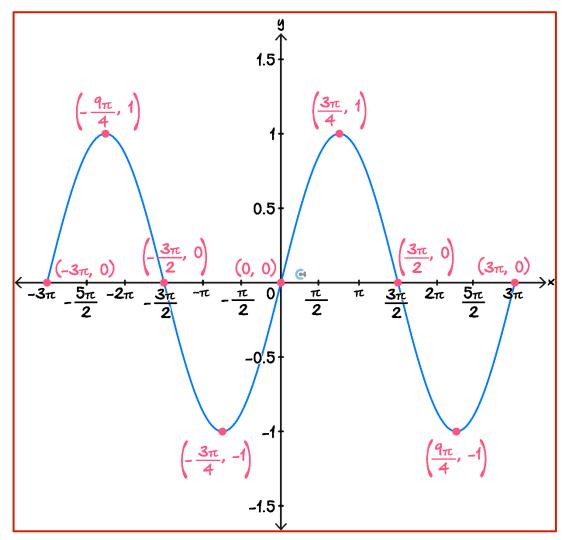


## Sub-Section [3.3.2]: Graph Sine, Cosine, and Tangent Functions

#### **Question 16**

Sketch the graphs of the functions over the specified domain on the given axes. Label all axes intercepts, turning points and endpoints with their coordinates, and asymptotes with their equations.

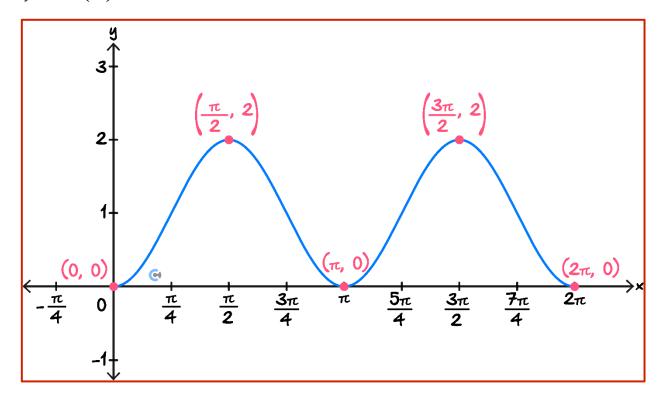
**a.**  $y = \sin\left(\frac{2x}{3}\right)$  for  $-3\pi \le x \le 3\pi$ .



$$\frac{2x}{3} = 0 \implies x = 0, \frac{3\pi}{2}$$
. Period =  $3\pi$ .



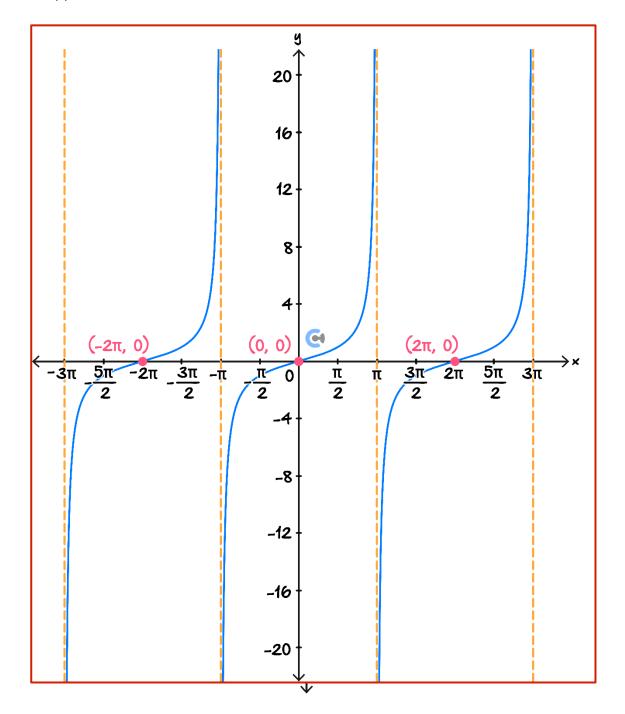
**b.**  $y = -\cos(2x) + 1$  for  $0 \le x \le 2\pi$ .



 $2x = 0 \implies x = 0$  is base angle. Period  $= \pi$ .



c.  $y = \tan\left(\frac{x}{2}\right)$  for  $-3\pi \le x \le 3\pi$ .



Period =  $2\pi$ . Asymptote base angle  $\pi$ , x-intercept base angle 0.

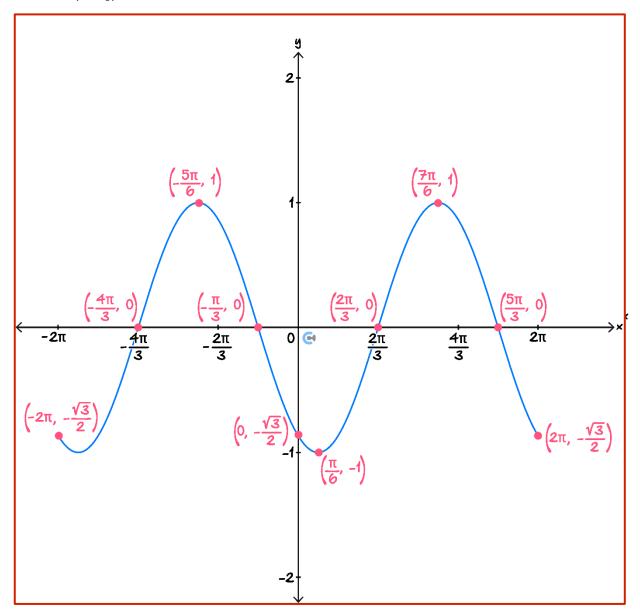


#### **Question 17**



Sketch the graphs of the functions over the specified domain on the given axes. Label all axes intercepts, turning points and endpoints with their coordinates and asymptotes with their equations.

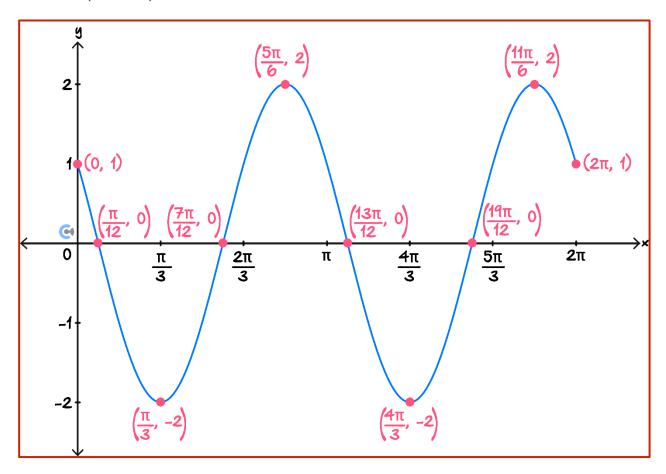
**a.** 
$$y = -\sin\left(x + \frac{\pi}{3}\right)$$
 for  $-2\pi \le x \le 2\pi$ .



$$x = -\frac{\pi}{3}, \frac{2\pi}{3}$$
 base angles for x-intercepts. Period =  $2\pi$ .

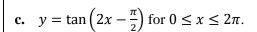


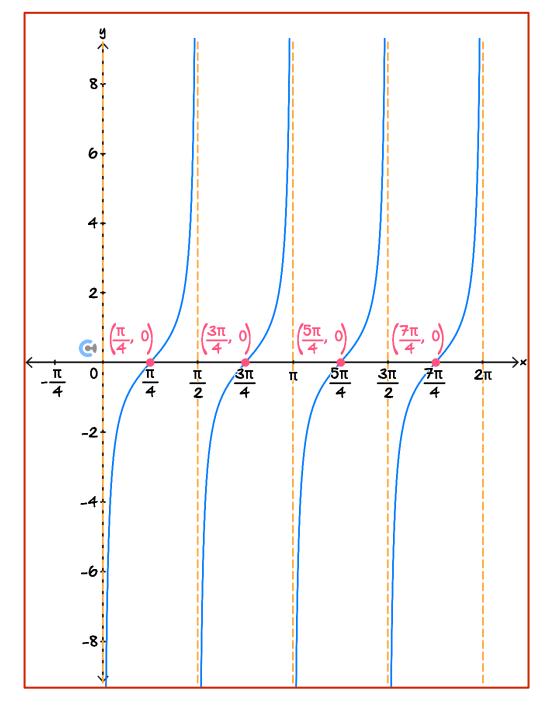
**b.**  $y = 2\cos\left(2\left(x + \frac{\pi}{6}\right)\right) \text{ for } 0 \le x \le 2\pi.$ 



$$2x+\frac{\pi}{3}=\frac{\pi}{2},\frac{3\pi}{2}\implies x=\frac{\pi}{12},\frac{7\pi}{12}. \text{ Period}=\pi.$$







Period =  $\frac{\pi}{2}$ . Base angle asymptote = 0. Base angle x-intercept =  $\frac{\pi}{4}$ .

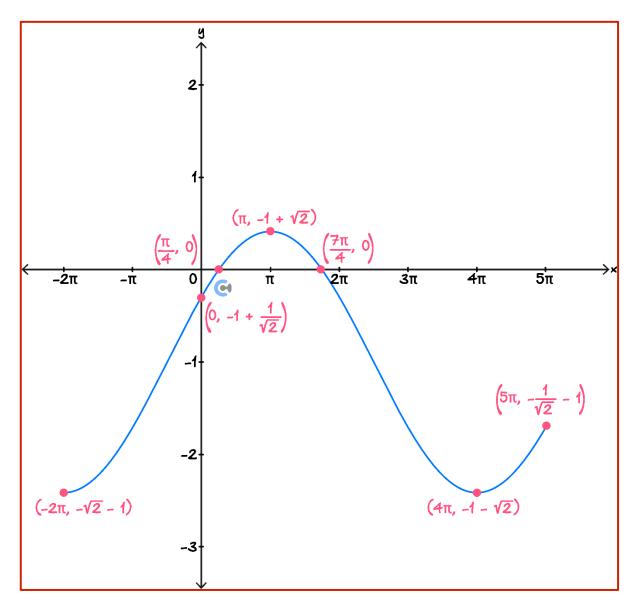


#### **Question 18**



Sketch the graphs of the functions over the specified domain on the given axes. Label all axes intercepts and endpoints with their coordinates and asymptotes with their equation.

**a.** 
$$y = \sqrt{2} \sin\left(\frac{x}{3} + \frac{\pi}{6}\right) - 1$$
 for  $-2\pi \le x \le 5\pi$ .



$$\frac{x}{3}+\frac{\pi}{6}=\frac{\pi}{4},\frac{3\pi}{4}\implies x=\frac{\pi}{4},\frac{7\pi}{4}$$



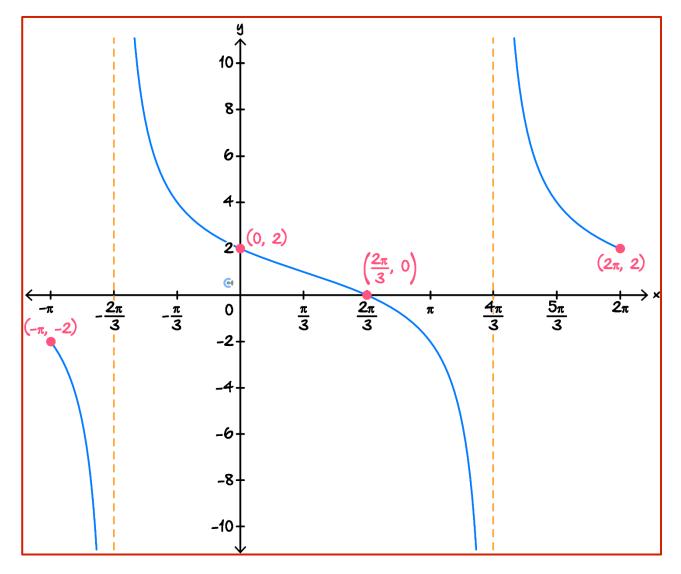
**b.**  $y = -2\cos\left(-2x + \frac{\pi}{3}\right) + 1 \text{ for } -\pi \le x \le 2\pi.$ 



$$-2x + \frac{\pi}{3} = \frac{2\pi}{3}, \frac{4\pi}{3} \implies x = -\frac{\pi}{6}, -\frac{\pi}{2}$$
 base angles. Period =  $\pi$ .



c.  $y = -\sqrt{3} \tan\left(\frac{x}{2} - \frac{\pi}{6}\right)$  for  $-\pi \le x \le 2\pi$ .



Period = 
$$2\pi$$
. Asymptotes  $x = -\frac{2\pi}{3} + 2n\pi$ . x-intercepts  $\frac{2\pi}{3} + 2n\pi$ .





## Sub-Section [3.3.3]: Fraction of Periods

#### **Question 19**

The temperature inside a storage container over a 24-hour period is modelled by

$$T(t) = 15 + 6\cos\left(\frac{\pi}{12}t\right),\,$$

Where T(t) is in degrees Celsius and t is the number of hours since midnight.

Find the fraction of the day during which the temperature exceeds 18°C.

We solve:

$$15 + 6\cos\left(\frac{\pi}{12}t\right) > 18$$

$$\cos\left(\frac{\pi}{12}t\right) > \frac{1}{2}$$

Solve the equation:

$$\frac{\pi}{12}t=\pm\frac{\pi}{3}+2n\pi\Rightarrow t=\pm4+24n$$

The period is:

$$T=\frac{2\pi}{\frac{\pi}{12}}=24$$

So within one day, we take:

$$0 < t < 4$$
 and  $20 < t < 24$ 

Total time above  $18^{\circ}$ C is 4+4=8 hours. Thus, the fraction is:

$$\frac{8}{24} = \frac{1}{3}$$



#### **Question 20 Tech-Active.**



The depth of a river fluctuates due to tides and is modelled by:

$$D(t) = 10 + 2.5\sin\left(\frac{\pi}{6}t\right),\,$$

where D(t) is the depth in metres and t is the time in hours since midnight.

**a.** State the maximum and minimum river depth.

$$D_{\text{max}} = 10 + 2.5(1) = 12.5, \quad D_{\text{min}} = 10 + 2.5(-1) = 7.5$$

**b.** Find the first two times after midnight the depth reaches exactly 11 metres. Give answers as hours after midnight correct to two decimal places.

Solve D(t) = 11 using CAS.  $t \approx 0.79, 5.21$ 

**c.** Determine the percentage of a full tidal cycle during which the depth is greater than 12 metres.

Solve D(t) = 12 and find time above this value using a graph.

Let duration above 12 be d, period is 12.

Solve 
$$D(t) = 12 \implies t = 1.77, 4.22 \implies d \approx 4.22 - 1.77 = 2.458$$

Percentage =  $\frac{d}{12} \times 100 \approx 20.5\%$ 



#### **Question 21 Tech-Active.**



The brightness inside a room with automated skylights varies during the day and is modelled by

$$B(t) = 300 + 100 \sin\left(\frac{\pi}{12}t\right),$$

where B(t) is the brightness in lumens and t is the number of hours since midnight.

a. Find the fraction of a full day during which the brightness exceeds 350 lumens.

Solve  $B(t) = 350 \Rightarrow t = 2, 10$ Fraction of day:  $\frac{10-2}{24} = \frac{1}{3}$ 

**b.** Find the value of k such that B(t) + k exceeds 400 lumens for exactly 30% of the time. Give your answer to two decimal places.

Solve B(t) + k = 400, find duration d where we are above 400 by subtracting two adjacent solutions and taking the magnitude.

Set  $\frac{d}{24} = 0.3$ , solve for k.

 $k \approx 41.22$ . It is quite simple to then verify your solution by using this value of k and finding the fraction above 400.

 $ln[47] = b[t_] := 300 + 100 Sin[Pi * t / 12]$ 

ln[52] = Solve[b[t] + k = 400, t]

Out[52]= 
$$\left\{\left\{t \rightarrow \frac{12\left(\pi - ArcSin\left[\frac{100-k}{100}\right] + 2\pi c_1\right)}{\pi} \text{ if } c_1 \in \mathbb{Z}\right\}\right\},$$

$$\left\{t \rightarrow \frac{12\left(ArcSin\left[\frac{100-k}{100}\right] + 2\pi c_1\right)}{\pi} \text{ if } c_1 \in \mathbb{Z}\right\}\right\}$$

Space for Pe

In[53]:= Abs 
$$\left[\frac{12\left(\pi - ArcSin\left[\frac{100-k}{100}\right] + 2\pi c_1\right)}{\pi} - \frac{12\left(ArcSin\left[\frac{100-k}{100}\right] + 2\pi c_1\right)}{\pi}\right]$$

Out[53]= Abs  $\left[12 - \frac{24 \operatorname{ArcSin}\left[1 - \frac{k}{100}\right]}{\pi}\right]$ 

In[54]:= Solve 
$$\left[\frac{Abs\left[12 - \frac{24 ArcSin\left[1 - \frac{k}{100}\right]}{\pi}\right]}{24} = 0.3, k\right]$$

••• Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

Out[54]=  $\{\{k \rightarrow 41.2215\}, \{k \rightarrow 41.2215\}\}$ 



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

## VCE Mathematical Methods ¾

## Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                                    | <u>Text-Based Support</u>                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Book via <u>bit.ly/contour-methods-consult-2025</u> (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message +61 440 138 726 with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |  |

Booking Link for Consults
bit.lv/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

