

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Circular Functions I [3.2]

**Test Solutions** 

23.5 Marks. 1 Minute Reading. 19 Minutes Writing

#### **Results:**

| <u> </u>       |        |  |
|----------------|--------|--|
| Test Questions | / 23.5 |  |





## Section A: Test Questions (23.5 Marks)

**Question 1** (3.5 marks)

Tick whether the following statements are **true** or **false**.

|    |                                                                                                                                                                          | True     | False    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| a. | On the unit circle, the value of sin is represented by the <i>y</i> -value of the unit circle whereas the value of tan is represented by the gradient of the projection. | <b>✓</b> |          |
| b. | If you change the value of $x$ by the period in a tan function, the angle changes by $2\pi$ .                                                                            |          | <b>✓</b> |
| c. | In a supplementary relationship, the values of sin change to values of cos and vice versa.                                                                               |          | <b>✓</b> |
| d. | For a particular solution, the trigonometric equation must have a restricted domain.                                                                                     | <b>*</b> |          |
| e. | For a general solution, the trigonometric equation must <b>NOT</b> have a restricted domain.                                                                             | <b>✓</b> |          |
| f. | <b>f.</b> Angle $\theta$ reflected in the x-axis, y-axis and $y = x$ is given by $\frac{3\pi}{2}$ + It should be negative.                                               |          | <b>✓</b> |
| g. | $\tan\left(\frac{7\pi}{2} + \theta\right) = -\frac{1}{\tan\left(\theta\right)}.$                                                                                         | <b>✓</b> |          |

Question 2 (5 marks)

It is known that  $cos(a) = -\frac{1}{7}$  where a is a second quadrant angle.

Evaluate the following:

**a.**  $\cos(\pi + a)$ . (1 mark)

 $\frac{1}{7}$ 

**b.**  $\sin(\pi + a)$ . (2 marks)

 $\frac{-4\sqrt{3}}{7}$ 

c.  $\sin\left(\frac{3\pi}{2} + a\right)$ . (2 marks)

1 7

Question 3 (2 marks)

State the smallest positive value of k such that  $x = \frac{3\pi}{4}$  is a solution of  $\tan(x) = \cos(kx)$ .

 $tan(\frac{30}{4}) = los(hx \frac{30}{4}) \qquad \frac{3h\pi}{4} = \pi \pm 2n\pi, n \in \frac{\pi}{4}$   $-1 = los(\frac{3k\pi}{4}) \qquad \frac{3h\pi}{4} = \pi$   $\frac{3h\pi}{4} = \pi \pm 2n\pi, n \in \frac{\pi}{4}$   $\frac{1}{3}$ 



Question 4 (2 marks)

Solve 
$$\sin\left(2x + \frac{\pi}{4}\right) = 1$$
 for  $x \in [0, 2\pi]$ .

In[65]:= Reduce[Sin[2 x + Pi / 4] == 1 && 
$$0 \le x \le 2 Pi, x$$
]

Out[65]= 
$$x == \frac{\pi}{8} | x == \frac{9\pi}{8}$$



**Question 5** (6 marks)

**a.** Find the general solution to the equation below. (3 marks)

$$5\tan\left(4x - \frac{\pi}{3}\right) + 2 = -3$$

$$In[58]:= Solve[5 Tan [4 x - Pi / 3] + 2 == -3, x] // Expand$$

$$\mathsf{Out}[\mathsf{58}] = \left\{ \left\{ \mathbf{x} \to \boxed{\frac{\pi}{48} + \frac{\pi \, \mathbb{C}_1}{4} \; \text{if } \mathbb{C}_1 \in \mathbb{Z}} \right\} \right\}$$

Let  $f(x) = 5 \tan \left(4x - \frac{\pi}{3}\right) + 5$  and  $g(x) = 5 \tan \left(4x - \frac{\pi}{3}\right) - 5$ .

**b.** Find the smallest horizontal distance between any two roots of f and g. (2 marks).

Corresponding roots are half a period away from each other.

Period is  $\frac{\pi}{4}$ .

Therefore, smallest distance is  $\frac{\pi}{8}$ .

c. Hence, give a general formula for the distance between any two roots of f and g. (1 mark).  $\frac{n\pi}{8}, n \in Z^+.$ 



Question 6 (5 marks)

Consider the equation below:

$$-2\sin^2\left(x+\frac{\pi}{3}\right) + 3\cos\left(x+\frac{\pi}{3}\right) = 0$$

Evaluate the following:

**a.** Find the general solution for x. (4 marks)

Equivalent to the equation:

$$2\cos^{2}\left(x + \frac{\pi}{3}\right) + 3\cos\left(x + \frac{\pi}{3}\right) - 2 = 0$$

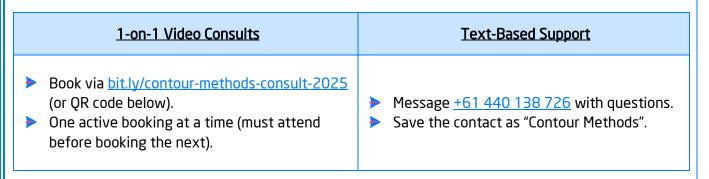
Out[53]= 
$$\left\{\left\{x \rightarrow \boxed{-2 \pi c_1 \text{ if } c_1 \in \mathbb{Z}}\right\}, \left\{x \rightarrow \boxed{-\frac{2 \pi}{3} - 2 \pi c_1 \text{ if } c_1 \in \mathbb{Z}}\right\}\right\}$$

$$x = 2n\pi \text{ OR } x = -\frac{2\pi}{3} + 2n\pi, n \in Z.$$

**b.** Hence, find the values of  $x \in [0, 2\pi]$  that satisfy the equation. (1 mark)

 $x = 0, \frac{4\pi}{3}, 2\pi$ 




Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

### VCE Mathematical Methods 34

# Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

