

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Circular Functions I [3.2] Test

23.5 Marks. 1 Minute Reading. 19 Minutes Writing

#### **Results:**

| Test Questions | / 23.5 |  |
|----------------|--------|--|





### Section A: Test Questions (23.5 Marks)

**Question 1** (3.5 marks)

Tick whether the following statements are **true** or **false**.

|    |                                                                                                                                                                          | True | False |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| a. | On the unit circle, the value of sin is represented by the <i>y</i> -value of the unit circle whereas the value of tan is represented by the gradient of the projection. |      |       |
| b. | If you change the value of $x$ by the period in a tan function, the angle changes by $2\pi$ .                                                                            |      |       |
| c. | In a supplementary relationship, the values of sin change to values of cos and vice versa.                                                                               |      |       |
| d. | For a particular solution, the trigonometric equation must have a restricted domain.                                                                                     |      |       |
| e. | For a general solution, the trigonometric equation must <b>NOT</b> have a restricted domain.                                                                             |      |       |
| f. | Angle $\theta$ reflected in the x-axis, y-axis and $y = x$ is given by $\frac{3\pi}{2} + \theta$ .                                                                       |      |       |
| g. | $\tan\left(\frac{7\pi}{2} + \theta\right) = -\frac{1}{\tan\left(\theta\right)}.$                                                                                         |      |       |

**Space for Personal Notes** 

Question 2 (5 marks)

It is known that  $cos(a) = -\frac{1}{7}$  where a is a second quadrant angle.

Evaluate the following:

**a.**  $\cos(\pi + a)$ . (1 mark)

**b.**  $\sin(\pi + a)$ . (2 marks)

c.  $\sin\left(\frac{3\pi}{2} + a\right)$ . (2 marks)

\_\_\_\_\_

Space for Personal Notes

Question 3 (2 marks)

State the smallest positive value of k such that  $x = \frac{3\pi}{4}$  is a solution of  $\tan(x) = \cos(kx)$ .

 $tan(\frac{30}{4}) = los(kx \frac{31}{4}) \qquad \frac{3k\pi}{4} = \pi \pm 2n\pi, n \in \mathbb{Z}$   $-1 = los(\frac{3k\pi}{4}) \qquad los(\frac{3k\pi}{4}) = \pi$   $k = \frac{4}{3}$ 

**Space for Personal Notes** 



#### VCE Methods ¾ Questions? Message +61 440 138 726

|   | Space for Personal Notes |
|---|--------------------------|
|   |                          |
| I |                          |
| I |                          |
| I |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |

Question 5 (6 marks)

**a.** Find the general solution to the equation below. (3 marks)

$$5\tan\left(4x - \frac{\pi}{3}\right) + 2 = -3$$

Let  $f(x) = 5 \tan \left(4x - \frac{\pi}{3}\right) + 5$  and  $g(x) = 5 \tan \left(4x - \frac{\pi}{3}\right) - 5$ .

**b.** Find the smallest horizontal distance between any two roots of f and g. (2 marks).



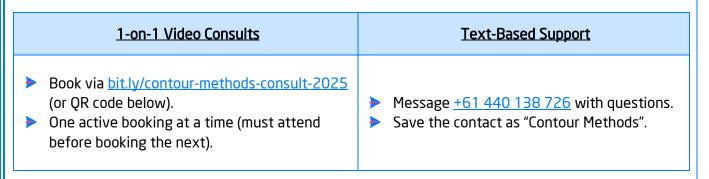
VCE Methods 3/4 Questions? Message +61 440 138 726

| c.            | Hence, give a general formula for the distance between any two roots of $f$ and $g$ . (1 mark). |  |
|---------------|-------------------------------------------------------------------------------------------------|--|
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
| <sub>Sr</sub> | pace for Personal Notes                                                                         |  |
|               | ace for reisonal notes                                                                          |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |
|               |                                                                                                 |  |



| Question 6 (5 marks)                                                                      |  |  |
|-------------------------------------------------------------------------------------------|--|--|
| Consider the equation below:                                                              |  |  |
| $-2\sin^2\left(x+\frac{\pi}{3}\right)+3\cos\left(x+\frac{\pi}{3}\right)=0$                |  |  |
| Evaluate the following:                                                                   |  |  |
| <b>a.</b> Find the general solution for $x$ . (4 marks)                                   |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
| <b>b.</b> Hence, find the values of $x \in [0, 2\pi]$ that satisfy the equation. (1 mark) |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |
|                                                                                           |  |  |




Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

#### VCE Mathematical Methods 34

## Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

