

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Circular Functions I [3.2]

Homework

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 02 - Pg 13
Supplementary Questions	Pg 14 - Pg 21

Section A: Compulsory Questions

<u>Sub-Section [3.3.1]</u>: Finding Exact Values of Circular Functions

Qu	estion 1	
Fin	nd the exact value of:	
a.	$\sin\left(\frac{\pi}{4}\right)$	
		-
b.	$\cos\left(\frac{\pi}{6}\right)$	
c.	$\tan\left(\frac{\pi}{3}\right)$	
		-

Find the exact value of:

- **a.** $\sin\left(\frac{3\pi}{2}\right)$
- **b.** $\cos\left(\frac{5\pi}{6}\right)$
- c. $\tan\left(\frac{5\pi}{3}\right)$

Question 3

Find the exact value of:

- **a.** $\sin\left(\frac{16\pi}{3}\right)$
- **b.** $\cos\left(\frac{26\pi}{3}\right)$
- c. $\tan\left(\frac{15\pi}{4}\right)$

VCE Methods 34 Questions? Message +61 440 138 726

ch-Active.	Tech.	4	Duction	O
cn-Active	- i ecn-	4	Juestion	()

Find the exact value of $\sin\left(\frac{\pi}{8}\right)$ in the form of $\frac{\sqrt{a-\sqrt{a}}}{2}$, for positive integer a.

<u>Sub-Section [3.3.2]</u>: Applying the Pythagorean Identity and Symmetrical **Properties**

Question 5

Given that $\sin(x) = \frac{4}{5}$ and $0 < x < \frac{\pi}{2}$, find:

 \mathbf{a} . $\cos(x)$

b. tan(x)

c. $\sin\left(x+\frac{\pi}{2}\right)$

VCE Methods ¾ Questions? Message +61 440 138 726

Question 6

Given that $\sin(x) = \frac{3}{5}$ and $\frac{\pi}{2} < x < \pi$, find:

- a. cos(x)
- **b.** tan(x)
- $\mathbf{c.} \quad \cos\left(x \frac{3\pi}{2}\right)$

Given that $tan(x) = \frac{12}{5}$ and $-\pi < x < -\frac{\pi}{2}$, find:

a. sin(x)

b. cos(x)

c. $\sin\left(x + \frac{7\pi}{2}\right)$

Question 8 Tech-Active.

Find $\sin(x) + \cos(y)$ if $\sin(y) = -\frac{8}{17}$ and $\cos(x) = \frac{12}{37}$, where $0 < x < \frac{\pi}{2}$ and $\frac{3\pi}{2} < y < 2\pi$.

<u>Sub-Section [3.3.3]</u>: Finding Particular and General Solutions

Qu	nestion 9	
a.	Solve $2\cos(x) = \sqrt{3}$ for $0 \le x \le 2\pi$.	
b.	Solve $\sqrt{2}\sin(x) = 1$ for $0 \le x \le 2\pi$.	
c.	Solve $4 \tan(x) = 4$.	

a. Solve $8\cos(3x) = 4$ for x.

b. Solve $6 \sin \left(2x + \frac{\pi}{3}\right) = 3$ for $-2\pi \le x \le 2\pi$.

c. Solve $2 \sin(3(x + \pi)) = 1$ for *x*.

a. Find the general solution to $2\cos\left(3x - \frac{\pi}{3}\right) = 1$, where $x \ge 0$.

b. Find the general solution to $\sqrt{3} \tan \left(4x - \frac{\pi}{2}\right) = 3$, where $x \ge 0$.

c. Find the general solution to $3 \sin \left(2x - \frac{\pi}{4}\right) = \frac{3}{2}$, where $x \le 0$.

VCE Methods ¾ Questions? Message +61 440 138 726

Question 12 Tech-Active.			
Find the general solution to $2\cos\left(3x + \frac{\pi}{4}\right) = \sqrt{2}$.			

Space for Personal Notes

Sub-Section: The 'Final Boss'

Question 13

Let $f(x) = \sin(2x)$.

a. Write the function $g(x) = f\left(x - \frac{\pi}{4}\right) + f\left(x + \frac{3\pi}{4}\right) + f\left(x + \frac{9\pi}{4}\right)$ in terms of $\cos(2x)$ only.

b. Find all values of a such that:

 $i. \quad f(x-a) = f(x)$

 $\mathbf{ii.} \quad f(x+a) = \cos(2x)$

VCE Methods ¾ Questions? Message +61 440 138 726

c. Find the general solution to $2f\left(x - \frac{\pi}{8}\right) = \sqrt{2}$.

d. Solve the equation $2\sin^2(2x) + \sin(2x) = 1$ for $x \in [-\pi, \pi]$.

Section B: Supplementary Questions

Sub-Section [3.3.1]: Finding Exact Values of Circular Functions

Question 14

Find the exact value of:

- **a.** $\sin\left(\frac{\pi}{6}\right)$
- **b.** $\cos\left(\frac{\pi}{4}\right)$
- c. $\tan\left(\frac{\pi}{6}\right)$

Question 15

Find the exact value of:

- **a.** $\sin\left(\frac{7\pi}{6}\right)$
- **b.** $\cos\left(\frac{4\pi}{3}\right)$
- c. $\tan\left(\frac{7\pi}{4}\right)$

Find the exact value of:

- **a.** $\sin\left(\frac{19\pi}{6}\right)$
- **b.** $\cos\left(\frac{25\pi}{6}\right)$
- c. $\tan\left(\frac{17\pi}{4}\right)$

<u>Sub-Section [3.3.2]</u>: Applying the Pythagorean Identity and Symmetrical Properties

Question 17

Given that $\sin(x) = \frac{5}{13}$ and $0 < x < \frac{\pi}{2}$, find:

a. cos(x)

b. tan(x)

c. $\sin\left(x + \frac{\pi}{2}\right)$

Given that $\sin(x) = \frac{7}{25}$ and $\frac{\pi}{2} < x < \pi$, find:

a. cos(x)

b. tan(x)

 $\mathbf{c.} \quad \cos\left(x - \frac{3\pi}{2}\right)$

Given that $tan(x) = \frac{8}{15}$ and $-\pi < x < -\frac{\pi}{2}$, find:

a. sin(x)

b. cos(x)

 $\mathbf{c.} \quad \sin\left(x + \frac{7\pi}{2}\right)$

Sub-Section [3.3.3]: Finding Particular and General Solutions

Question 20

a. Solve $3\cos(x) = \frac{3}{2}$ for $0 \le x \le 2\pi$.

b. Solve $2\sin(x) = \sqrt{2}$ for $0 \le x \le 2\pi$.

Solve	$5 \tan(x)$	=	5
	Solve	Solve $5 \tan(x)$	Solve $5 \tan(x) =$

a. Solve $6\cos(2x) = 3$ for x.

b. Solve $4 \sin \left(3x + \frac{\pi}{4}\right) = 2$ for $-2\pi \le x \le \pi$.

c. Solve $2\sin(4(x+\pi)) = 1$ for x.

a. Find the general solution to $2\cos\left(2x - \frac{\pi}{4}\right) = 1$, where $x \ge 0$.

b. Find the general solution to $\sqrt{3}\tan\left(5x - \frac{\pi}{3}\right) = 3$, where $x \ge 0$.

c. Find the general solution to $4 \sin \left(3x - \frac{\pi}{6}\right) = 2$, where $x \le 0$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 34

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

