

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ AOS 3 Revision [3.0]

SAC 1 Solutions

52 Marks. 15 Minutes Reading. 75 Minutes Writing.

Section A: SAC Questions (Tech Active) (52 Marks)

Question 1 (10 marks)

Supersonic cars race against each other in a 100 km straight stretch of land in the desert. The position x km from the starting point after t minutes is given by:

$$x(t) = \frac{3}{4} t^{\frac{4}{3}} - 360t - 3(t - 60)^{\frac{4}{3}} + c$$

where $t \ge 60$.

a. Find the exact value of c, assuming the car starts at x = 0 when t = 60. (2 marks)

Require
$$x(60) = 0$$
 [1M]

$$0 = \frac{3}{4}(60)^{4/3} - 360(60) - 3(60 - 60)^{4/3} + c$$

$$0 = \frac{3}{4}(60)^{4/3} - 21600 - 0 + c$$

$$c = 21600 - \frac{3}{4}(60)^{4/3}$$
 [1A]
(or $c = 21600 - 45 \cdot (20)^{1/3}$)

b. Find the domain of x'(t). (1 mark)

Domain $(60, \infty)$ [1A]

c. The velocity is given by v(t) = x'(t). Find v(t). (2 marks)

$$v(t) = \frac{d}{dt} \left(\frac{3}{4} t^{4/3} - 360t - 3(t - 60)^{4/3} + c \right) [\mathbf{1M}]$$

$$v(t) = \frac{3}{4} \cdot \frac{4}{3} t^{1/3} - 360 - 3 \cdot \frac{4}{3} (t - 60)^{1/3}$$

$$v(t) = t^{1/3} - 4(t - 60)^{1/3} - 360 [\mathbf{1A}]$$

d. The acceleration is given by a(t) = v'(t). Find a(t). (2 marks)

$$a(t) = \frac{d}{dt} \left(t^{1/3} - 4(t - 60)^{1/3} - 360 \right) [1M]$$

$$a(t) = \frac{1}{3} t^{-2/3} - 4 \cdot \frac{1}{3} (t - 60)^{-2/3}$$

$$a(t) = \frac{1}{3t^{2/3}} - \frac{4}{3(t - 60)^{2/3}} [1A]$$

e. Hence, investigate the speed of the car for t > 60. Is there a maximum speed? Justify your answer.

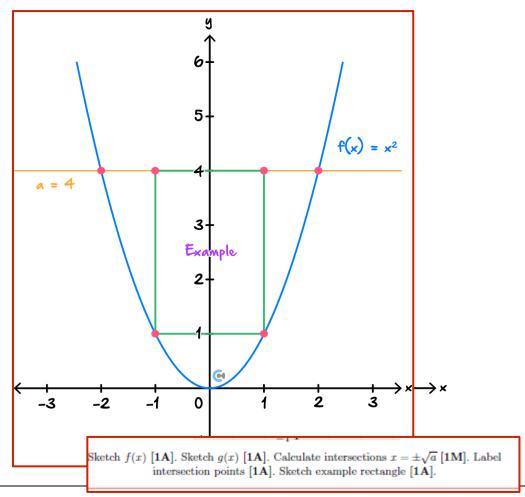
Note: Speed is the magnitude (size) of velocity. That is, speed = |v(t)|. (3 marks)

```
Setting a(t) = 0 yields no solution in the domain t > 60 [1M]
Analysis shows a(t) = \frac{1}{3}[t^{-2/3} - 4(t - 60)^{-2/3}] < 0 for all t > 60.
Since a(t) = v'(t) < 0, v(t) is always decreasing and tends to -\infty. Speed = |v(t)| increases without bound.[1M]
There is no maximum speed [1A]
```

Question 2 (16 marks)

Consider the two functions: $f(x) = x^2$ and g(x) = a, where $a \in \mathbb{R}^+$. A rectangle is inscribed between these two functions, such that one edge lies on the line y = g(x) whilst the two opposite vertices lie on the graph of y = f(x).

a. On a set of axes, sketch f(x), g(x) for a = 4. An example of the inscribed rectangle is described. Label the point(s) of intersection between f(x) and g(x) in terms of a. (5 marks)



b. What can be said about the relationship between the x-coordinates of the vertices of the rectangles? (2 marks)

Due to symmetry of $y = x^2$ and y = a about the y-axis [1M]. The x-coordinates come in pairs $\pm b$ for some b (0 < $b \le \sqrt{a}$) [1A].

c. Hence, given that one of the vertices lies on f(x) has an x-coordinate of b (where $0 < b \le \sqrt{a}$), state the coordinates of the 4 vertices, in terms of a and b. (2 marks)

Vertices on f(x): (b, b^2) and $(-b, b^2)$ [1M]. Vertices on g(x): (b, a) and (-b, a) [1A].

d. Hence, express the area A of the rectangle in terms of b and a. (2 marks)

Width = b - (-b) = 2b. Height = $a - b^2$ [1M]. Area A(b) = Width × Height = $2b(a - b^2)$ [1A].

e. Hence, find the exact value of b (in terms of a) for which the area of the rectangle will be a maximum, and state this exact maximum area. (3 marks)

 $A(b) = 2ab - 2b^{3}.$ $A'(b) = 2a - 6b^{2}. \text{ Set } A'(b) = 0 \text{ [1M]}.$ $6b^{2} = 2a \implies b^{2} = a/3 \implies b = \sqrt{a/3} \text{ (since } b > 0) \text{ [1A]}.$ $\text{Max Area} = A(\sqrt{a/3}) = 2\sqrt{\frac{a}{3}}(a - \frac{a}{3})$ $= \frac{4a\sqrt{a}}{3\sqrt{3}} = \frac{4a\sqrt{3a}}{9} \text{ [1A]}.$

f. For what value(s) of b in the domain $0 < b \le \sqrt{a}$ is the area minimised? State the minimum area. (2 marks)

Area $A(b) = 2b(a - b^2)$. Check endpoint $b = \sqrt{a}$ [1M]. Minimum area is $A(\sqrt{a}) = 0$, occurring at $b = \sqrt{a}$ [1A].

Space for Personal Notes

Question 3 (21 marks)

Consider the function $f(x) = x^3 - 5x + 1$, for $x \in \mathbb{R}$.

a. State the equation of the tangent to the graph of y = f(x) at x = 2. (1 mark)

$f(2) = 2^3 - 5(2) + 1 = -1.$
$f'(x) = 3x^2 - 5 \implies f'(2) = 3(2^2) - 5 = 7.$
 Tangent: $y - (-1) = 7(x - 2) \implies y = 7x - 15$ [1A]

b. Let $x_0 = 2$. Use Newton's method once to find x_1 , and hence find the values of x_2 and x_3 using CAS. Give correct values to 4 decimal places. (3 marks)

Newton's formula: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ = $x_n - \frac{x_n^3 - 5x_n + 1}{3x_n^2 - 5}$ [1M]. $x_1 = 2 - \frac{f(2)}{f'(2)}$ = $2 - \frac{-1}{7} = \frac{15}{7} \approx 2.1429$ [1A].	
 Using CAS: $x_2 \approx 2.1286$. $x_3 \approx 2.1284$ [1A].	

c. Using $x_0 = 2$, state the smallest value of n such that x_n correctly approximates the value of the positive x-intercept of f(x), correct to 4 decimal places. (2 marks)

True positive root $x^* \approx 2.128419...$ Rounds to 2.1284 (4 dp) [1M]. $x_1 \approx 2.1429, x_2 \approx 2.1286, x_3 \approx 2.1284.$ x_3 is the first iteration that rounds to 2.1284. So n = 3 [1A].

A tangent line is drawn to the function y = f(x) at the point where x = a.

d.

i. State the equation of this tangent line in terms of a. (2 marks)

 $f(a) = a^3 - 5a + 1.$ $f'(a) = 3a^2 - 5$ [1M].	
Equation: $y - (a^3 - 5a + 1) = (3a^2 - 5)(x - a)$. $y = (3a^2 - 5)x - a(3a^2 - 5) + a^3 - 5a + 1$. $y = (3a^2 - 5)x - 2a^3 + 1$ [1A].	
 $y = (3a^2 - 5)x - 2a^3 + 1$ [1A].	

ii. Given that this tangent line passes through the coordinate (0, 1), state the possible value(s) of a. (2 marks)

```
Substitute (0, 1) into tangent equation:

1 = (3a^2 - 5)(0) - 2a^3 + 1 [1M].

1 = -2a^3 + 1.

2a^3 = 0.

a = 0 [1A].
```

iii. State the possible value(s) of a such that using $x_0 = a$ in Newton's method for f(x) = 0 causes an oscillating sequence (e.g., x_0, x_1, x_0, \ldots). Give the value(s) correct to 2 decimal places. (2 marks)

Condition often related to 2a = f(a)/f'(a) [1M]. $2a(3a^2 - 5) = a^3 - 5a + 1.$ $5a^3 - 5a - 1 = 0.$ Solving using CAS gives $a \approx -0.83, a \approx -0.20, a \approx 1.03$ [1A].

CONTOUREDUCATION

iv.	State the possible value(s) of a such that using $x_0 = a$ in Newton's method for $f(x) = 0$ terminates
	immediately at a root. Give value(s) correct to 2 decimal places. (2 marks)

Terminates immediately if $x_0 = a$ is a root, i.e., f(a) = 0 [1M]. $a^3 - 5a + 1 = 0.$ Roots (via CAS) are $a \approx -2.33, a \approx 0.20, a \approx 2.13$ [1A].

Let another function be $g(x) = \sqrt{x+4}$, for $x \ge -4$.

e.

i. Determine which composite function, f(g(x)) or g(f(x)), has a domain that is a strict subset of the domain of the inner function, and state why.

Note: A strict is a subset that isn't equal to the original set. (1 mark)

Inner function f(x) has domain \mathbb{R} . Inner function g(x) has domain $[-4, \infty)$. $f(g(x)) \text{ requires } x \geq -4. \text{ Domain is } [-4, \infty) \text{ (same as } g).$ $g(f(x)) = \sqrt{x^3 - 5x + 5}. \text{ Requires } x^3 - 5x + 5 \geq 0.$ Domain approx $[-2.627, \infty)$. Since $[-2.627, \infty) \subset \mathbb{R}$, g(f(x)) has the strictly subset domain [1A].

ii. For the composite function identified in part e.i., state its domain correctly to 3 decimal places. (2 marks)

The function is g(f(x)). Need $x^3 - 5x + 5 \ge 0$ [1M]. From CAS, the only real root is $x_r \approx -2.627365...$ Domain is $[-2.627, \infty)$ (approx) [1A].

iii. State the range of the composite function identified in part e.i. (1 mark)

 $g(f(x)) = \sqrt{\text{non-negative value}}.$ Range is $[0, \infty)$ [1A].

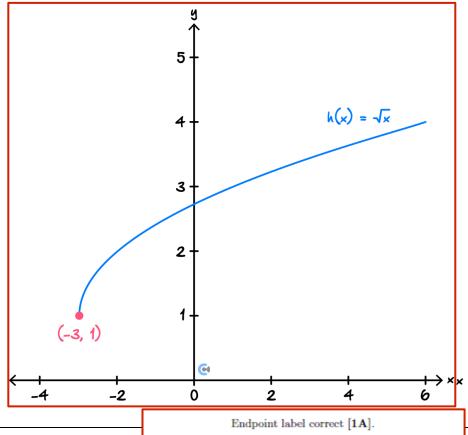
f. Using Newton's method, approximate the solution to the equation f(x) = g(x). Use $x_0 = 2$ and stop when successive iterations differ by less than 10^{-4} . Give your answer correct to 4 decimal places. (3 marks)

Let $h(x) = f(x) - g(x) = x^3 - 5x + 1 - \sqrt{x+4}$. Need $h(x) = 0$. $x_{n+1} = x_n - h(x_n)/h'(x_n)$ [1M].	
Using CAS with $x_0 = 2$:	
 $x_1 \approx 2.507586$. $x_2 \approx 2.384763$.	
 $x_2 \approx 2.364703$. $x_3 \approx 2.375343$.	
$x_4 \approx 2.375289 \ [1M].$	
 $ x_4 - x_3 \approx 0.000054 < 10^{-4}.$	
 Solution $x \approx 2.3753$ [1A].	

Question 4 (5 marks)

Let the function be $h(x) = \sqrt{x + k} + 1$.

a. Sketch the graph of y = h(x) on the axes below, given that k = 3. Label the coordinates of the endpoint clearly. (1 mark)



MM34 [3.0] - AOS 3 Revision - SAC 1 So

CONTOUREDUCATION

b. Define the inverse function $h^{-1}(x)$, stating its domain. (2 marks)

Swap x, y in $y = \sqrt{x+k}+1 \implies x = \sqrt{y+k}+1$. Solve for y: $x-1=\sqrt{y+k} \implies (x-1)^2=y+k \implies y=(x-1)^2-k$ [1M]. $h^{-1}(x)=(x-1)^2-k$. Domain of $h^{-1}=$ Range of $h=[1,\infty)$ [1A].

c. Find the possible value(s) of k such that h(x) and its inverse function $h^{-1}(x)$ have exactly one point of intersection. (2 marks)

Intersection when $h(x) = x \implies \sqrt{x+k} + 1 = x$. Leads to quadratic $x^2 - 3x + (1-k) = 0$, for $x \ge 1, x \ge -k$ [1M].

Single solution if discriminant $D = 5 + 4k = 0 \implies k = -5/4$ (tangency at x = 1.5). Or if D > 0 (k > -5/4) and only one root $\geq \max(1, -k)$. This occurs when smallest root $< 1 \implies k > -1$.

Single intersection occurs for k = -5/4 or k > -1 [1A].

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

