

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
AOS 3 Revision [3.0]
SAC 1

52 Marks. 15 Minutes Reading. 75 Minutes Writing.

Section A: SAC Questions (Tech Active) (52 Marks)

Question 1 (10 marks)

Supersonic cars race against each other in a 100 km straight stretch of land in the desert. The position x km from the starting point after t minutes is given by:

$$x(t) = \frac{3}{4} t^{\frac{4}{3}} - 360t - 3(t - 60)^{\frac{4}{3}} + c$$

where $t \ge 60$.

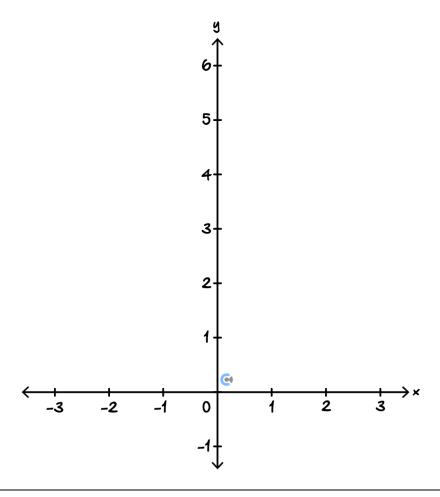
a. Find the exact value of c, assuming the car starts at x = 0 when t = 60. (2 marks)

b. Find the domain of x'(t). (1 mark)

c. The velocity is given by v(t) = x'(t). Find v(t). (2 marks)

d. The acceleration is given by a(t) = v'(t). Find a(t). (2 marks)

e. Hence, investigate the speed of the car for t > 60. Is there a maximum speed? Justify your answer.


Note: Speed is the magnitude (size) of velocity. That is, speed = |v(t)|. (3 marks)

Question 2 (16 marks)

Consider the two functions: $f(x) = x^2$ and g(x) = a, where $a \in \mathbb{R}^+$. A rectangle is inscribed between these two functions, such that one edge lies on the line y = g(x) whilst the two opposite vertices lie on the graph of y = f(x).

a. On a set of axes, sketch f(x), g(x) for a = 4. An example of the inscribed rectangle is described. Label the point(s) of intersection between f(x) and g(x) in terms of a. (5 marks)

VCE Methods ¾ Questions? Message +61 440 138 726

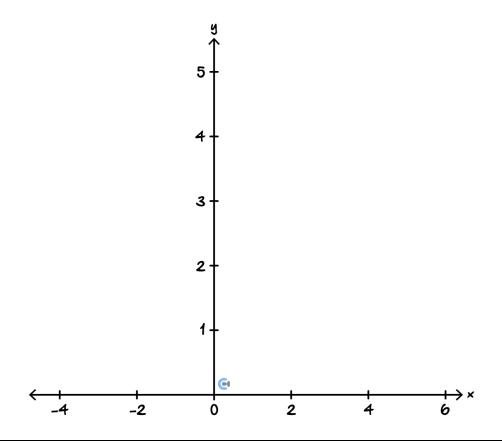
b.	What can be said about the relationship between the x -coordinates of the vertices of the rectangles? (2 marks)
c.	Hence, given that one of the vertices lies on $f(x)$ has an x -coordinate of b (where $0 < b \le \sqrt{a}$), state the coordinates of the 4 vertices, in terms of a and b . (2 marks)
d.	Hence, express the area A of the rectangle in terms of b and a. (2 marks)
e.	Hence, find the exact value of b (in terms of a) for which the area of the rectangle will be a maximum, and state this exact maximum area. (3 marks)
f.	For what value(s) of b in the domain $0 < b \le \sqrt{a}$ is the area minimised? State the minimum area. (2 marks)
Sp	ace for Personal Notes

4

Question 3 (21 marks)				
Consider the function $f(x) = x^3 - 5x + 1$, for $x \in \mathbb{R}$.				
State the equation of the tangent to the graph of $y = f(x)$ at $x = 2$. (1 mark)				
b. Let $x_0 = 2$. Use Newton's method once to find x_1 , and hence find the values of x_2 and x_3 using CAS. Give correct values to 4 decimal places. (3 marks)				
c. Using $x_0 = 2$, state the smallest value of n such that x_n correctly approximates the value of the positive x -intercept of $f(x)$, correct to 4 decimal places. (2 marks)				

A t	A tangent line is drawn to the function $y = f(x)$ at the point where $x = a$.			
d.				
	i.	State the equation of this tangent line in terms of a . (2 marks)		
	ii.	Given that this tangent line passes through the coordinate $(0, 1)$, state the possible value(s) of a . (2 marks)		
	iii.	State the possible value(s) of a such that using $x_0 = a$ in Newton's method for $f(x) = 0$ causes an oscillating sequence (e.g., x_0, x_1, x_0, \ldots). Give the value(s) correct to 2 decimal places. (2 marks)		

iv.	State the possible value(s) of a such that using $x_0 = a$ in Newton's method for $f(x) = 0$ terminates immediately at a root. Give value(s) correct to 2 decimal places. (2 marks)
	other function be $g(x) = \sqrt{x + 4}$, for $x \ge -4$.
e. i.	Determine which composite function, $f(g(x))$ or $g(f(x))$, has a domain that is a strict subset of the domain of the inner function, and state why.
	Note : A strict is a subset that isn't equal to the original set. (1 mark)
ii.	For the composite function identified in part e.i., state its domain correctly to 3 decimal places. (2 mark
iii.	State the range of the composite function identified in part e.i. (1 mark)



f. Using Newton's method, approximate the solution to the equation f(x) = g(x). Use $x_0 = 2$ and stop when successive iterations differ by less than 10^{-4} . Give your answer correct to 4 decimal places. (3 marks)

Question 4 (5 marks)

Let the function be $h(x) = \sqrt{x + k} + 1$.

a. Sketch the graph of y = h(x) on the axes below, given that k = 3. Label the coordinates of the endpoint clearly. (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

b.	Define the inverse function $h^{-1}(x)$, stating its domain. (2 marks)
c.	Find the possible value(s) of k such that $h(x)$ and its inverse function $h^{-1}(x)$ have exactly one point of intersection. (2 marks)
Sp	ace for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>	
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods". 	

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

