

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Pseudocode & its Exam Skills [2.7]

Workbook

Outline:

Algorithm

Introduction to Algorithm

Assigning Variables

Selections

Loops

Pg 2-15

Pg 2-15

Pseudocode Exam Skills

Pg 22-27

Pseudocode for Newton's Method

Exam 2

Pg 28-31

Learning Objectives:

MM34 [2.7.1] - Evaluate Pseudocode with Conditional Statements and Loops

MM34 [2.7.2] - Evaluate and Understand the Pseudocode for Different Implementations of Newton's Method

Section A: Algorithm

Sub-Section: Introduction to Algorithm

What is an Algorithm?

<u>Algorithm</u>

An algorithm is a clearly specified ______.

Question 1

Write down the steps necessary (create an algorithm) to find the gradient of a function at x = 2.

Sub-Section: Assigning Variables

Assigning Variables

To construct algorithms for more mathematical/complex problems, _____ variables will be useful.

 $A \leftarrow 3$ assigns the value 3 to the variable A.

➤ We can also _____ our variables using the arrow.

 $A \leftarrow A + 3$ assigns the value A + 3 to the variable A.

• Since the value of A was already 3, Its new value will be 6.

Question 2

What final value will be output by the algorithm below?

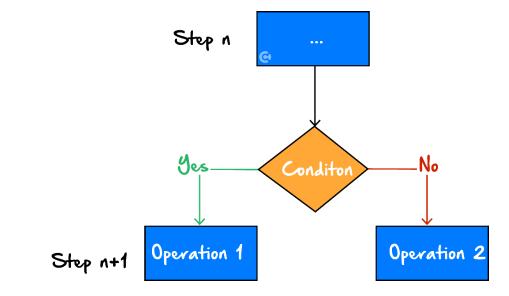
Step 1:
$$A \leftarrow 5$$
.

Step 2:
$$A \leftarrow A - 2$$
.

Step 3:
$$A \leftarrow 2A + 4$$
.

Step 4: Print A.

Sub-Section: Selections


<u>Discussion:</u> What could we do if we want to selectively perform an operation?

Selections

Selections allow us to perform different operations at a given step, depending on a certain condition.

We are ______ performing an operation.

Key Words for Conditions

If, then

Otherwise/Else

Else If

Track the values of n and T in each step for the algorithm below.

Step 1:
$$n \leftarrow 3$$
.

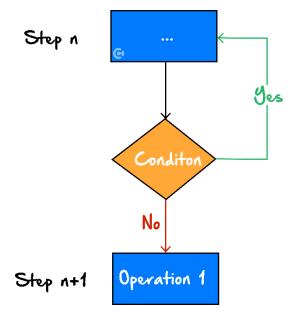
Step 2: If n is odd, then $T \leftarrow 2n + 5$.

Otherwise $T \leftarrow n - 7$.

Step 3: $n \leftarrow n - 2$.

Step 4: Print n, T.

Sub-Section: Loops


<u>Discussion:</u> What do we do if we want to do something repeatedly?

Iteration (Loops)

- Iteration (a.k.a. looping) allows us to repeat steps in a ______.
- It is controlled by the ______.
 - **G** E.g., we only loop when a condition is met.

Key Words for Iteration

Repeat...For...

Repeat...While...

Let's look at a while loop example!

Question 4 Walkthrough.

Step 1:
$$A \leftarrow 5$$
.

Step 2:
$$A \leftarrow 3A - 1$$
.

Step 3: **Repeat** from Step 2 while A < 20.

Step 4: Print A.

NOTE: We only stop the loop when $A \ge 20$. Hence, our final answer for A should be ≥ 20 .

Question 5

Step 1:
$$B \leftarrow 10$$
.

Step 2:
$$B \leftarrow 1.5B - 2$$
.

Step 3: **Repeat** from Step 2 while B < 15.

Step 4: Print B.

Let's look at a for loop example!

Question 6 Walkthrough.

Step 1:
$$A \leftarrow 7$$
.

Step 2:
$$A \leftarrow 2A + 1$$
.

Step 3: **Repeat** from Step 2 **for** 2 iterations.

Step 4: Print A.

<u>Discussion:</u> Could you have told me how many loops we will be doing without running through the algorithm?

Question 7

Step 1:
$$A \leftarrow 2$$
.

Step 2:
$$A \leftarrow A - 3$$
.

Step 3: **Repeat** from Step 2 **for** 3 iterations.

Step 4: Print A.

Discussion: What are the differences between for and while loops?

Analogy: Your Parents Taking Care of You

- Consider the two parents below.
 - Parent 1:

I'll take care of you for the next 10 years!

Parent 2:

I'll take care of you while you are not married!

- G For which parent do we exactly know how many years they will take care of us?
- Hence, which parent is a for loop and which parent is a while loop?

For vs While Loop

- For Loop:
 - We know how many iterations will happen.
- While Loop:
 - We don't know how many loops will happen.

Sub-Section: Pseudocode

What is a pseudocode?

Pseudocode

if condition then

operation 1

else

operation 2

end if

A way to write the algorithm in a code-like style.

Pseudocode for Selections

"If-then"

if condition then

operation

end if

• Allows us to perform an operation only when a certain condition is met.

VCE Methods ¾ Questions? Message +61 440 138 726

"Else"

if condition then operation 1 else operation 2 end if

- Provides an opportunity to perform an operation only when a certain condition is met.
- "Else-If"

if condition 1 then operation 1 else if condition 2 then operation 2 else operation 3 end if

• Provides an opportunity to add multiple pathways, each with different conditions.

Question 8 Walkthrough.

Evaluate the final output from each of the following:

```
x \leftarrow 7
if x < 11
x \leftarrow x + 10
else
x \leftarrow x - 15
end if
print x
```

Question 9

Evaluate the final output from each of the following:

```
a \leftarrow 7
b \leftarrow 3
if a + b < 15
b \leftarrow b - 2
a \leftarrow a + 5
end if
print a, b
```


Pseudocode for Iteration

For loops:

for	variable	from	lower bound	to	upper bound
			condition		
O	peration				
end	for				

- Loops for which a variable increases by ______ each time it loops.
- The variable gets moved from the ______ to the _____ by 1.
- **While loops:** Loops which do **not** change the value of any variable by default.

while condition
operation
end while

Question 10 Walkthrough.

Evaluate the final output from each of the following:

```
sum \leftarrow 3
for i from 3 to 7
sum \leftarrow sum + i
end for
print sum
```


Question 11

Evaluate the final output from each of the following:

```
total \leftarrow 3
for i from 1 to 5
total \leftarrow total + 2i - 1
end for
print total
```

Question 12 Walkthrough.

Find the output of the following algorithm written in pseudocode:

```
a \leftarrow 2
while a < 15
a \leftarrow a + 5
end while
print a
```


Question 13

Evaluate the final output from each of the following:

$$a \leftarrow 3$$

 $b \leftarrow 7$
while $a + b < 13$
 $b \leftarrow b - 1$
 $a \leftarrow a + 3$
end while
print a, b

Section B: Test (15 Marks)

INSTRUCTION: 15 Marks. 15 Minutes Writing.


```
Question 14 (2 marks)

Find the output of the following algorithm written in pseudocode.

a \leftarrow 2
while a < 15
if a is even
a \leftarrow a + 5
else
a \leftarrow a + 3
end if
end while
print a
```

Space	for	Personal	Notes
	. • .		

Question 15 (2 marks)	
Evaluate the final output from each of the following:	
$a \leftarrow 4$	
$b \leftarrow 3$	
for <i>i</i> from 1 to 4	
$b \leftarrow b - 2$	
$a \leftarrow a + 5$	
end for	
print a, b	

	Space for Personal Notes
I	
I	
ı	

CONTOUREDUCATION

Question	16	(2.	marks'	١
Oucsuon	10	\	marks.	,

A transformation maps the graph of y = f(x) to y = af(bx + c) + d, where a, b, c and d are positive real numbers. The following algorithm will be used to map any point (x, y) on the graph of y = f(x) to the graph of y = af(bx + c) + d.

input
$$x, y$$
 # Line 1

$$x_new =$$
 # Line 2

print
$$x_{new}$$
 # Line 4

print
$$y_{new}$$
 # Line 5

Complete lines 2 and 3 of the algorithm.

VCE Methods ¾ Questions? Message +61 440 138 726

_	
Qı	nestion 17 (3 marks)
Us	ing pseudocode, write an algorithm to calculate the sum of the first n terms of the sequence:
	$\frac{1}{1^2}, \frac{1}{2^2}, \frac{1}{3^2} \dots$
	12'22'32
Sp	pace for Personal Notes

Evaluate the final output of the pseudocode below: $a \leftarrow 1 \\ b \leftarrow 4 \\ \text{for } i \text{ from 1 to 6} \\ \text{for } j \text{ from 1 to 8} \\ b \leftarrow b + j \\ a \leftarrow a + i + j \\ \text{end for} \\ \text{end for} \\ \text{print } a, b$	Question 18 (3 marks)
$b \leftarrow 4$ for i from 1 to 6 for j from 1 to 8 $b \leftarrow b + j$ $a \leftarrow a + i + j$ end for	Evaluate the final output of the pseudocode below:
for i from 1 to 6 for j from 1 to 8 $b \leftarrow b + j$ $a \leftarrow a + i + j$ end for end for	
for j from 1 to 8 $b \leftarrow b + j$ $a \leftarrow a + i + j$ end for end for	
$b \leftarrow b + j$ $a \leftarrow a + i + j$ end for end for	
$a \leftarrow a + i + j$ end for end for	
end for end for	
end for	
print <i>a</i> , <i>b</i>	
	print a, b
	

Space for Personal Notes

Question 19 (3 marks)
Find the final output of the pseudocode shown below:
$x \leftarrow 5$
$y \leftarrow 2$ $z \leftarrow 0$
for i from 1 to 4 while $x > 0$ if x is even then $x \leftarrow x - 1$ $y \leftarrow y + i$ else $x \leftarrow x - 2$ $z \leftarrow z + y$ end if end while end for
print <i>x</i> , <i>y</i> , <i>z</i>

Section C: Pseudocode Exam Skills

Sub-Section: Pseudocode for Newton's Method

0

REMINDER: VCAA Formula For Newton's Method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Question 20 Walkthrough. Tech-Active.

Conisder the implementation of Newton's method shown below:

Inputs: f(x), a function of xx0, an initial estimate f or the x- intercept of f(x)

Define newton (f(x), x0)

 $df(x) \leftarrow \text{ the derivative of } f(x)$ $i \leftarrow 0$ $\text{prev}_x \leftarrow x0$ **for** i from 1: 3 **Do**

 $\begin{aligned} & \mathsf{next}_{\mathsf{x}} \leftarrow \mathsf{prev}_{\mathsf{x}} - \mathsf{f}(\mathsf{prev}_{\mathsf{x}}) \div \mathsf{df}(\mathsf{prev}_{\mathsf{x}}) \\ & \mathsf{prev}_{\mathsf{x}} \leftarrow \mathsf{next}_{\mathsf{x}} \end{aligned}$

End For

Return next_x

Find the return value of newton($x^2 - 5, 4$), correct to three decimal places.

Question 21 Tech-Active.

Conisder the implementation of Newton's method shown below:

```
Inputs: f(x), a function of x
x0, an initial estimate f or the x- intercept of f(x)
n, the number of iterations
```

```
Define newton (f(x), x0, n)

df(x) \leftarrow the derivative of f(x)

i \leftarrow 0

prev_x \leftarrow x0

while i < n Do

next_x \leftarrow prev_x - f(prev_x) \div df(prev_x)

i \leftarrow i + 1

prev_x \leftarrow next_x

End While

Return next_x
```

Find the return value of newton($x^2 - 7,4,3$), correct to three decimal places.

Little harder now!

REMINDER: Tolerance

The maximum difference between x_n and x_{n+1} we can have when we stop the iteration.

We stop when
$$|x_{n+1} - x_n| < Tolerance$$
.

The question will give us the tolerance level.

Question 22 Walkthrough. Tech-Active.

Consider the pseudocode shown below:

```
Inputs: f(x), a function of x
x0, an initial estimate f or the x- intercept of f(x)
\varepsilon, a tolerance level
```

Define newton
$$(f(x), x0, \varepsilon)$$

 $df(x) \leftarrow \text{ the derivative of } f(x)$
 $i \leftarrow 0$
 $\text{prev}_x \leftarrow x0$
While $i \leq 1000 \, \text{Do}$
 $\text{next}_x \leftarrow \text{prev}_x - \text{f(prev}_x) \div \text{df(prev}_x)$

$$\mathbf{If} - \varepsilon < \text{next}_x - \text{prev}_x < \varepsilon \, \, \mathbf{Then}$$

$$\mathbf{Return} \, \text{next}_x$$

$$\mathbf{Else}$$

$$\text{prev}_x \leftarrow \text{next}_x$$
 $i \leftarrow i + 1$

End While

The number of iterations required for Newton ($x^2 - 7,5,0.01$) is given by:

- **A.** 2
- **B.** 4
- **C.** 25
- **D.** 1000

Question 23

A pseudocode to compute $\sqrt{3}$ using Newton's method is shown below.

```
define h(x)

return x^2 - 3

define h'(x)

return 2x

xnext \leftarrow 2

xprev \leftarrow 50

while |xnext - xprev| \ge 0.001

xprev \leftarrow xnext

xnext \leftarrow xprev - \frac{h(xprev)}{h'(xprev)}

print xnext

end while
```

The program will stop after how many iterations of the while loop?

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

Now limitation of Newton's method.

0

REMINDER: Limitation of Newton's Method

- Terminating Sequence: Occurs when we hit a stationary point.
- Approximating a Wrong Root: Occurs when we start on the wrong side.
- Oscillating Sequence: Occurs when we oscillate between two values without getting closer to the real root.

```
Question 24 Walkthrough. Tech-Active.
```

```
Inputs: f(x), a function of x
x0, an initial estimate f or the x- intercept of f(x)
```

Define newton
$$(f(x), x0)$$

 $df(x) \leftarrow \text{ the derivative of } f(x)$
 $i \leftarrow 0$

$$prev_x \leftarrow x0$$

While $i \le 1000 \, \text{Do}$

$$next_x \leftarrow prev_x - f(prev_x) \div df(prev_x)$$

$$\begin{aligned} \textbf{If} - 0.1 < \text{next}_x - \text{prev}_x < 0.1 \ \textbf{Then} \\ \textbf{Return} \ \text{next}_x \end{aligned}$$

Else

$$prev_x \leftarrow next_x$$

 $i \leftarrow i + 1$

End While

The number of iterations required for Newton $(x(x+5)(x-5), \sqrt{5})$ is given by:

- **A.** 500
- **B.** 999
- **C.** 1000
- **D.** 1001

Question 25 Tech-Active.

```
Inputs: f(x), a function of x
x0, an initial estimate f or the x- intercept of f(x)
```

Define newton
$$(f(x), x0)$$

$$df(x) \leftarrow \text{ the derivative of } f(x)$$

 $i \leftarrow 0$

 $prev_x \leftarrow x0$ **While** i < 5000 **Do**

$$\mathsf{next}_x \leftarrow \mathsf{prev}_x - \mathsf{f}(\mathsf{prev}_x) \div \mathsf{df}(\mathsf{prev}_x)$$

$$\begin{aligned} \textbf{If} - 0.1 < \text{next}_x - \text{prev}_x < 0.1 \ \textbf{Then} \\ \textbf{Return} \ \text{next}_x \end{aligned}$$

Else

$$prev_x \leftarrow next_x$$

 $i \leftarrow i + 2$

End While

The number of iterations required for Newton $\left(x(x+1)(x-1), \frac{1}{\sqrt{5}}\right)$ is given by:

- **A.** 5
- **B.** 5000
- C. 2499
- **D.** 2500

Section D: Exam 2

Question 26

The algorithm shown below will print the value:

```
a \leftarrow 3
while a < 18
a \leftarrow 2a
End While
Print (a)
```

- **A.** 24
- **B.** 28
- **C.** 30
- **D.** 32

Question 27

The algorithm shown below will print the value:

```
sum ← 4
for x from 1 to 3
    for y from 1 to 2
        sum = sum + x + y
    end for
end for
print (sum)
```

- **A.** 19
- **B.** 21
- **C.** 23
- **D.** 25

Question 28 Tech-Active.

The algorithm below, described in pseudocode, estimates the root of a function f(x) up to a given tolerance.

```
Inputs: f(x), a function of x
df(x), the derivative of f
x0, an initial guess of the root of f
tol, the tolerance

Define newton (f(x), df(x), x0, \text{tol})
E \leftarrow \text{tol} + 1
While E > \text{tol} Do
x \leftarrow x0 - f(x0) \div df(x0)
If x > x0 Then E \leftarrow x - x0
Else E \leftarrow x0 - x
End if
```

 $x0 \leftarrow x$ End While Return x0

Consider the algorithm implemented with the following inputs:

Newton
$$(x^2 - 12, 2x, 3, 0.05)$$

The value of the variable E after the function is implemented, is closest to:

- **A.** 0.0002
- **B.** 0.0357
- $\mathbf{C.} -0.0357$
- **D.** -0.0002

Question 29 Tech-Active.

Consider the algorithm below, which uses the Newton's method to estimate the x-intercept of a function with a tolerance of 0.001.

```
Inputs: f(x), a function of x
df(x) \leftarrow the derivative of f(x)
x0, an initial estimate f or the x-intercept of f

Define newton (f(x), df(x), x_0)
prev_x \leftarrow x_0
For i From 1 to 1000
next_x \leftarrow prev_x - f(prev_x) \div df(prev_x)
If - 0.0001 < next_x - prev_x < 0.0001 Then
Return next_x
Else
prev_x \leftarrow next_x
End if
EndFor
```

Consider the algorithm implemented with the following inputs:

Return "Error: Did not converge"

Newton
$$(x^3 - 5x, 3x^2 - 5, 1)$$

The value of the variable $next_x$ after the function is implemented, is closest to:

- **A.** -1
- **B.** 1
- C. $\sqrt{5}$
- **D.** $-\sqrt{5}$

Question 30

One way of implementing Newton's method using pseudocode, with a tolerance level of 0.005, is shown below. The pseudocode is incomplete, with two missing lines indicated by an empty box.

Inputs: f(x), a function of xx0, an initial estimate f or the x- intercept of f(x)

Define newton (f(x), x0) $df(x) \leftarrow$ the derivative of f(x) $i \leftarrow 0$ $prev_x \leftarrow x0$ **while** i < 1000 **Do** $next_x \leftarrow prev_x - f(prev_x) \div df(prev_x)$

> $\operatorname{prev}_{\mathbf{x}} \leftarrow \operatorname{next}_{\mathbf{x}}$ $i \leftarrow i + 1$

EndWhile

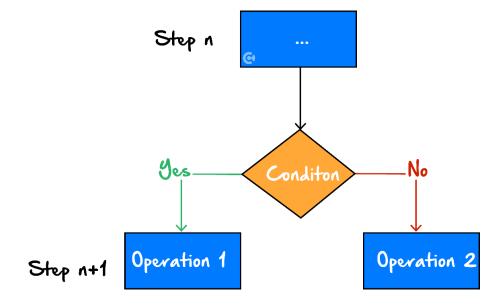
Which one of the following options would be most appropriate to fill the empty box?

- **A.** If $next_x prev_x < 0.005$ **Then Return** $prev_x$.
- **B.** If $prev_x next_x < 0.005$ **Then Return** $next_x$.
- C. If $-0.005 < \text{next}_x \text{prev}_x < 0.005$ Then Return prev_x .
- **D.** If $-0.005 < \text{next}_x \text{prev}_x < 0.005$ **Then Return** next_x .

Contour Check

□ <u>Learning Objective</u>: [2.7.1] - Evaluate pseudocode with conditional statements and loops

Key Takeaways


- Assigning Variables:

 $A \leftarrow 3$ assigns the value 3 to the variable A.

• We can also _____ our variables using the arrow.

 $A \leftarrow A + 3$ assigns the value A + 3 to the variable A.

- ☐ Since the value of A was already 3, Its new value will be 6.
- Selections:
 - Selections allow us to perform different operations at a given step, depending on a certain condition.

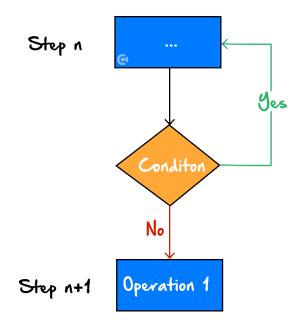
• We are ______ performing an operation.

"If-then"

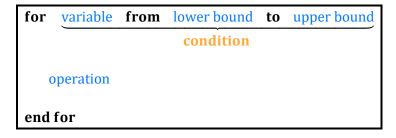
if condition then operation end if

- Allows us to perform an operation only when a certain condition is met.
- "Else"

if condition then operation 1 else operation 2 end if


- Provides an opportunity to perform an operation only when a certain condition is met.
- "Else-If"

```
if condition 1 then
   operation 1
else if condition 2 then
   operation 2
else
   operation 3
end if
```


Provides an opportunity to add multiple pathways, each with different conditions.

- Iteration (Loops):
 - Iteration (a.k.a. looping) allows us to repeat steps in a ________
 - O It is controlled by the ______.
 - ☐ E.g., we only loop when a condition is met.

O For loops:

- Loops for which a variable increases by ______each time it loops.
- ☐ The variable gets moved from the ______ to the _____ by 1.
- O While loops: Loops which do not change the value of any variable by default.

while condition
operation
end while

Learning Objective: [2.7.2] - Evaluate and understand the pseudoco	de for
different implementations of Newton's method	

Key Takeaways

☐ A key component of Newton's method is the recursive relationship.

$$x_{n+1} = x_n - \underline{\hspace{1cm}}$$

- Newton's method requires an input function f(x), the derivative f'(x) and an initial value x_0 .
- ☐ The number of iterations that Newton's method performs can be limited in our pseudocode.
- ☐ The pseudocode can also specify a tolerance for Newton's method where the algorithm terminates if

<	T	ol	ler	an	Ce	9

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

