

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Pseudocode & its Exam Skills [2.7]

Homework

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2 — Pg 13
Supplementary Questions	Pg 14 – Pg 22

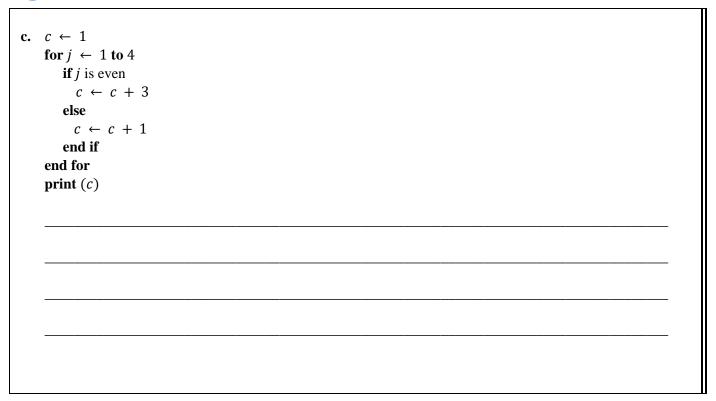
Section A: Compulsory Questions

<u>Sub-Section [2.7.1]</u>: Evaluate Pseudocode with Conditional Statements and Loops

Question 1

The following pseudocode segments each print a value. Write down the value that is printed.

- a. $x \leftarrow 5$ if x > 3 $x \leftarrow x + 2$ end if print(x)
- **b.** $y \leftarrow 10$ **if** y < 5 $y \leftarrow y - 3$ **else** $y \leftarrow y + 4$ **end if print** (y)
- c. $z \leftarrow 1$ while z < 4 $z \leftarrow z + 1$ end while print (z)



The following pseudocode segments each print a value. Write down the value that is printed.

a. $a \leftarrow 3$ **for** *i* **from** 1 **to** 3 if $a \leq 5$ $a \leftarrow a + 2$ end if end for print (a)

b. $b \leftarrow 6$ while b > 2**if** *b* is even $b \leftarrow b - 3$ else $b \leftarrow b - 1$ end if end while print (b)

Space for Personal Notes	

The following pseudocode segments each print values. Write down the values that are printed.

```
a. a ← 1

b ← 2

for i from 1 to 3

for j from 1 to 2

if a is even

b ← b + a

else

a ← a + j

end if

end for

end for

print (a, b)
```

```
b. x \leftarrow 3

y \leftarrow 10

while y > 5

for j from 1 to 2

if x is even

y \leftarrow y - j

else

x \leftarrow x + 1

end if

end for

end while

print (x, y)
```



```
c. p \leftarrow 2
q \leftarrow 8
for j from 1 to 3

for k from 1 to 2

if q is even

p \leftarrow p + k
q \leftarrow q - 1
else
q \leftarrow q - p
end if
end for
end for
print (p,q)
```

Space for Personal Notes

<u>Sub-Section [2.7.2]</u>: Evaluate and Understand the Pseudocode for Different Implementations of Newton's Method

Question 4

An implementation of Newton's method is shown below.

define newton
$$(f(x), x_0, n)$$
:
 $df(x) \leftarrow$ the derivative of $f(x)$
for i **from** 1 **to** n **do**
if $df(x_0) = 0$ **then**
return "Error: Division by zero"
else
 $x_0 \leftarrow x_0 - \frac{f(x_0)}{df(x_0)}$
end if
end while
return x_0

Consider calling the function newton($x^2 - 3, 2, 3$).

- **a.** How many iterations are performed?
- **b.** What is the final value of x_0 . Give your answer correct to three decimal places.

Space for Personal Notes

$\mathbf{\alpha}$	4.	_
	uestion	5

An implementation of Newton's method is shown below.

```
define newton(f(x), x_0, n, tol):

df(x) \leftarrow the derivative of f(x)

i \leftarrow 0

x_n \leftarrow x_0

while i < n do

if df(x_n) = 0 then

return "Error: Division by zero"

x_{n+1} \leftarrow x_n - \frac{f(x_n)}{df(x_n)}

if -tol < x_{n+1} - x_n < tol then

return x_{n+1}

x_n \leftarrow x_n + 1

i \leftarrow i + 1

end while

return x_n
```

Consider calling the function newton ($x^3 - x^2 + 1, 2, 30, 0.001$).

a. Find the final return value. Give your answer correct to four decimal places.

Question 6

An implementation of Newton's method is shown below.

```
define newton(f(x), x_0, n, tol):

df(x) \leftarrow the derivative of f(x)

i \leftarrow 0

x_n \leftarrow x_0

while i < n do

if df(x_n) = 0 then

return "Error: Division by zero"

x_{n+1} \leftarrow x_n - \frac{f(x_n)}{df(x_n)}

if -tol < x_{n+1} - x_n < tol then

return x_{n+1}

x_n \leftarrow x_{n+1}

i \leftarrow i + 1

end while

return x_n
```

Consider calling the function.

a. Find the final return value of newton $(x^3 - 5x^2 + 1, 1, 2, 0.01)$.

b. The function newton $\left(x(x+2)(x-2), \frac{2}{\sqrt{5}}, 2000, 0.0001\right)$ is called. Find the final return value.

Sub-Section: The 'Final Boss'

Question 7

a. Consider the pseudocode shown below. Determine the final values of m and n.

```
m \leftarrow 2

n \leftarrow 3

for i from 1 to 3

for j from 1 to 2

if m + n > 5

m \leftarrow m + j

n \leftarrow n - 1

else

m \leftarrow m + 2

n \leftarrow n + 1

end if

end for

end for

print(m, n)
```


b.	An implementation of Newton's method is shown below.
	define newton $(f(x), x_0, n)$:
	$df(x) \leftarrow \text{the derivative of } f(x)$
	for i from 1 to n do
	if $df(x_0) = 0$ then
	return "Error: Division by zero"
	else
	$x_0 \leftarrow x_0 - \frac{f(x_0)}{df(x_0)}$
	end if
	end while
	return x_0
	The call newton($\sin(x)$, x_0 , 10) is made.
	State all values of x_0 for which the function returns an error.

c. The bisection algorithm is a method for approximating solutions to the equation f(x) = 0. As inputs, the algorithm takes a function f, an interval [a, b] which should contain a root of f, and a tolerance ϵ , which the approximate solution is within of the exact solution. Pseudocode is shown below:

```
define Bisection (f, a, b, \epsilon)
    if f(a) \times f(b) \ge 0
       print("Bisection method fails.")
       return None
   end if
   while |b - a| > 2\epsilon
      if f(m) = 0
         return m
       end if
      if f(a) \times f(m) < 0
         b \leftarrow m
     else
        a \leftarrow m
     end if
end while
return \frac{a+b}{2}
```

i. What happens when we call Bisection $(x^3 + 3x + 5, -4, -2, 0.01)$.

VCE Methods ¾ Questions? Message +61 440 138 726

Space 1	for Perso	onal N	otes

Section B: Supplementary Questions

Question 8

The following pseudocode segments each print a value. Write down the value that is printed.

a.
$$x \leftarrow 8$$

if $x > 5$
 $x \leftarrow x - 3$
end if
print(x)

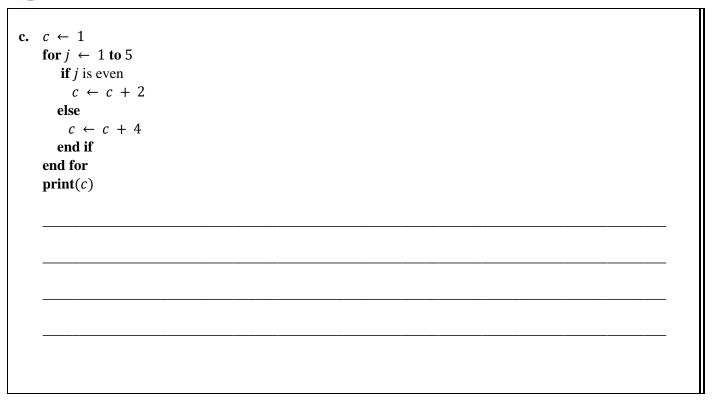
b.
$$y \leftarrow 4$$

if $y < 3$
 $y \leftarrow y + 6$
else
 $y \leftarrow y - 1$
end if
print (y)

c. $z \leftarrow 2$

while z < 6 $z \leftarrow z + 2$ end while
print (z)

Space for Personal Notes



The following pseudocode segments each print a value. Write down the value that is printed.

```
a. a \leftarrow 2
     for i \leftarrow 1 to 4
         if a is even
           a \leftarrow a + 3
         else
           a \leftarrow a + 2
         end if
     end for
     print(a)
```

b. $b \leftarrow 10$ while b > 4**if** *b* is even else $b \leftarrow b - 3$ end if

Space for Personal Notes	

The following pseudocode segments each print values. Write down the values that are printed.

```
a. a ← 2

b ← 3

for i from 1 to 2

for j from 1 to 3

if a is even

b ← b + j

a ← a + 1

else

a ← a + 2

end if

end for

print(a, b)
```


b. $x \leftarrow 5$	
$y \leftarrow 12$	
while $y > 6$	
for j from 1 to 3	
if x is even	
$y \leftarrow y - 2$	
else	
$x \leftarrow x + 1$	
end if	
end for	
end while	
$\mathbf{print}(x,y)$	


```
c. p \leftarrow 1
q \leftarrow 10
for j from 1 to 4
for k from 1 to 2
if q is even
p \leftarrow p + k
q \leftarrow q - 2
else
q \leftarrow q - 1
end if
end for
end for
print(p,q)
```

Space for Personal Notes	

<u>Sub-Section [2.7.1]</u>: Evaluate and Understand the Pseudocode for Different Implementations of Newton's Method

Question 11	
An implementation of Newton's method is shown below.	
define newton $(f(x), x_0, n)$: $df(x) \leftarrow$ the derivative of $f(x)$ for i from 1 to n do if $df(x_0) = 0$ then return "Error: Division by zero" else $x_0 \leftarrow x_0 - \frac{f(x_0)}{df(x_0)}$ end if end while return x_0	
Consider calling the function newton $(x^2 - 5, 2, 5)$.	
a. How many iterations are performed?	
b. What is the final value of x_0 . Give your answer correct to four decimal places.	

Space for Personal Notes

Ouestion	11
Ouesnon	112

An implementation of Newton's method is shown below.

```
define newton(f(x), x_0, n, tol):

df(x) \leftarrow the derivative of f(x)

i \leftarrow 0

x_n \leftarrow x_0

while i < n do

if df(x_n) = 0 then

return "Error: Division by zero"

x_{n+1} \leftarrow x_n - \frac{f(x_n)}{df(x_n)}

if -tol < x_{n+1} - x_n < tol then

return x_{n+1}

x_n \leftarrow x_{n+1}

i \leftarrow i + 1

end while

return x_n
```

Consider caling the function newton $(x^3 - x^2 + 5, 2, 30, 0.0001)$.

a.	Find the final return value. Give your answer correct to four decimal places.

b. State the value of i when the algorithm terminates.

Question 13

An implementation of Newton's method is shown below.

```
define newton(f(x), x_0, n, tol):

df(x) \leftarrow the derivative of f(x)

i \leftarrow 0

x_n \leftarrow x_0

while i < n do

if df(x_n) = 0 then

return "Error: Division by zero"

x_{n+1} \leftarrow x_n - \frac{f(x_n)}{df(x_n)}

if -tol < x_{n+1} - x_n < tol then

return x_{n+1}

x_n \leftarrow x_{n+1}

i \leftarrow i + 1

end while

return x_n
```

Consider calling the function.

a. Find the final return value of newton $(x^3 - 2x^2 + 4, 1, 2, 0.001)$.

b. The function newton $\left(x(x+7)(x-7), \frac{7}{\sqrt{5}}, 5001, 0.0001\right)$ is called. Find the final return value.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

