

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Family of Functions and its Exam Skills [2.6]

Homework Solutions

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2 — Pg 19

Section A: Compulsory Questions

<u>Sub-Section [2.6.1]</u>: Applying Family of Functions

Question 1					
Consider the following family of functions $f(x) = e^{ax} - 1$, $a > 0$.					
a. Identify the "surname" (common aspect(s) of the family) and the "first name" (unique aspect(s) of the family).					
Surname: All will pass through (0,0), all have a horizontal asymptote at $y = -1$. First Name: Each graph has a different dilation from the <i>y</i> -axis. b. Hence, state what happens to the graph of <i>f</i> in terms of a transformation when the value of <i>a</i> increases. As the value of <i>a</i> increases, the graph of <i>f</i> is dilated less from the <i>y</i> -axis, that is <i>f</i> moves closer to the <i>y</i> -axis as the value of <i>a</i> increases.					

CONTOUREDUCATION

Question 2

Consider the following family of functions $f(x) = (x - 2)^2 + k, k \in \mathbb{R}$.

a. Show that the graph of f always has a stationary point at x = 2 and find the nature of this stationary point.

 Ł,p	.)=Z(x	L-2)=0	, Solve	for	z :
 α-	2=0	∴ x=2	∴ S ·P	Qŧ	x:2
x		2	3		
 f'(x)	- 2	0	2		
∴ lo co	al Min	imum (/ at x=2		

b. Hence, identify the "surname(s)" and "first name(s)" of the family.

Surname: Local minimum at x = 2, same shape.

First name: Differing vertical translations \therefore different y and x-intercepts.

Question 3

Consider the family of functions $f(x) = \sin(kx + \frac{\pi}{2})$, $k \in \mathbb{R}$.

a. Identify the effects of k on the graph.

Increasing k will decrease the period of f(x), and vice versa (decreasing k will increase the period of f(x).

CONTOUREDUCATION

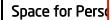
b. Hence, identify the "surname" and "first name(s)" of the family.

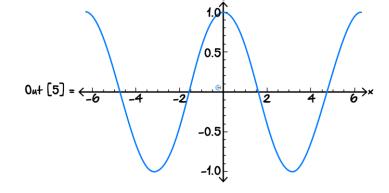
Surname: *y*-intercept at (0,1) since $f(0) = \sin(\frac{\pi}{2}) = 1$ for all $k \in \mathbb{R}$, same general shape. First name: Differing periods \div differing dilations from the *y*-axis.

c. Express f(x) without using sin when $k = \pm 1$.

Hint: List out the transformations and sketch the resulting graph if you get stuck!

In [5] = Plot $\left[Sin \left[-x + \frac{\pi}{2} \right], \left\{ x, -2\pi, 2\pi \right\} \right]$





 $f(x) = \cos(x)$. Translating the graph of $\sin(x) \frac{\pi}{2}$ units to the left results in $\cos(x)$, which is an even function (f(-x) = f(x)) therefore a reflection in the y-axis when k = -1 results in the same graph.

Question 4 Tech-Active.

Consider the family of functions $f(x) = e^{ax} - ax + 1, a \in \mathbb{R}^+$.

a. State one transformation that maps the graph of $g(x) = e^x - x + 1$ onto the graph of f(x).

Dilation by a factor of $\frac{1}{a}$ from the *y*-axis.

b. Identify a "surname" of the family.

y-intercept at (0,2).

c. Describe what happens to the shape of f(x) as α increases.

f dilates closer to the y-axis, which results in the graph curving upwards for positive values of x, and the graph approaches a linear shape for negative values of x.

d. By plotting $h(x) = f(x) - e^{ax}$ on the same axes as f(x), state the equation of the asymptote of f(x).

y = -ax + 1

<u>Sub-Section [2.6.2]</u>: Finding Unknowns for a Certain Number of Intersections

Question 5

Find the value of a where $a \in \mathbb{R}$ such that the graph of $f(x) = e^x + a$ intersects the line y = x exactly once.

$$f(x) = x \ (1) \ f'(x) = 1 \ (2)$$

$$=)e^{x}+a=x \qquad e^{x}=1 \therefore x=0$$

Question 6

Consider the functions $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + a$ where $a \in \mathbb{R}$ and g(x) = x - 3.

a. Find the inverse function of f(x).

b. Find the value of a such that the graph of $f^{-1}(x)$ intersects with g(x) exactly once.

$$\log_{e}(x-\alpha) = x-3 \text{ } \bigcirc \frac{dy}{dx} = \frac{1}{x-\alpha} = g'(x) = 1 \text{ } \bigcirc 2$$

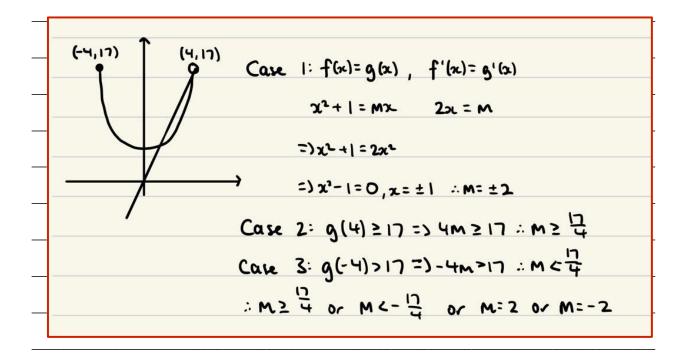
$$\text{from } \bigcirc 2 : x = \alpha + 1, \text{ sub into } \bigcirc 1 :$$

$$\log_{e}(\alpha + 1 - \alpha) = \alpha + 1 - 3$$

$$= \log_{e}(1) = \alpha - 2 = 0 = \alpha - 2 : \alpha = 2$$

Question 7

Consider the functions $f: [-4,4) \to \mathbb{R}$, $f(x) = x^2 + 1$ and g(x) = mx, $m \in \mathbb{R}$. Find the value(s) of m where f and g intersect exactly once.



Question 8 Tech-Active.

Consider the function $f:[k,\infty)\to\mathbb{R}$, $f(x)=(x-k)^2+4$. Find the value(s) of k such that f(x) and its inverse intersect exactly once.

Sub-Section [2.6.3]: Finding Unknowns for Maximums and Minimums

NOTE: This entire section can be done tech-active.

Ouestion 9

For what value of $k \in \mathbb{R}$, will the function, $f(x) = 2x + e^{kx}$ have a minimum on the x-axis?

In[41]:= Solve
$$\left[\left\{ 2 \times + E^{k \times} = 0, D \left[2 \times + E^{k \times}, x \right] = 0 \right\}, \left\{ k, x \right\} \right]$$
Out[41]:= $\left\{ \left\{ k \to -\frac{2}{6}, x \to -\frac{6}{2} \right\} \right\}$

$$k = -\frac{2}{e}$$

Question 10

For what value(s) of $k \in \mathbb{R}$ will the function $f(x) = (x - k)^2 \log_e(x)$ have a minimum at x = 4?

$$ln[42] = f[x_] := (x - k)^2 Log[x]$$

Out[45]=
$$\{ \{k \to 4\}, \{k \to 4 (1 + 2 Log [4]) \} \}$$

Inserting these values into a slider shows a minimum when k=4 but a maximum for the other solution of k: we must reject the other solution, leaving just k=4. ALWAYS PLOT AFTER SOLVING JUST TO CHECK.

Find the value(s) of $k \in \mathbb{R}$ such that the minimum of the function $f: [-4,10] \to \mathbb{R}$, $f(x) = 3\left(\frac{x}{2} - 3k\right)^2 - 6$ occurs at x = -4.

In[72]:= Solve[3 (-2-3k) == 0, k]
Out[72]=
$$\left\{ \left\{ k \rightarrow -\frac{2}{3} \right\} \right\}$$

(*Slider shows that minimum occurs for $k \le \frac{2}{3} *$)

$$\therefore k \le -\frac{2}{3}$$

Sub-Section: Exam 1 Questions

Question 12

Consider the function $f:[a,\infty)\to\mathbb{R}$, $f(x)=x^2-4x+k$, $k\in\mathbb{R}$, where a is a real constant that ensures f is a one-to-one function.

a. Find the smallest possible value of a.

$$f(x) = (x-2)^2 - 4 + k$$

T-P at $x = 2 : a = 2$

b. Find the value of k such that y = 4x is a tangent to the graph of f.

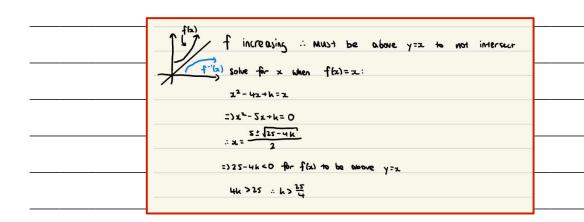
let
$$g(x)=4x$$

$$f'(x)=2x-4=g'(x)=4, \text{ solve for } x$$

$$x=4=)-f(4)=g(4)=16, \text{ solve for } k$$

$$k=16$$

c. Find the value(s) of k such that the graphs of f and f^{-1} do not intersect.



Question 13

Consider the function $f(x) = ae^x + k$, where $a \in \mathbb{R}^+$ and $k \in \mathbb{R}$.

Let the point P be the y-intercept of the graph of f(x).

a. State the coordinates of the point P in terms of α and k.

(0,a+k)

b. Find the gradient of f at P in terms of a.

 $f'(x) = ae^x, f'(0) = a$

c. Given that the graph of y = f(x) passes through the origin, express k in terms of a.

k = -a

d. Given that the graph of f also goes through the point (1,3(e-1)), find the values of a and k.

a = 3, k = -3

Question 14

Consider the function $f(x) = x^2 + ax + b$.

Find the value(s) of $a, b \in \mathbb{R}$ such that f(x) has a turning point at (1,4).

f'(x) = 2x + a f'(1) = 0 [Stationary point at x = 1] 2(1) + a = 0, a = -2 Again f(1) = 4

 $1^{2} + (-2)(1) + b = 4$ b = 5

Sub-Section: Exam 2 Questions

Question 15

The graph of y = kx + 2 intersects the graph of $y = 2x - 3x^2$ at 2 distinct points for:

A.
$$k = 2$$

B.
$$k \in [2 - 2\sqrt{6}, 2 + 2\sqrt{6}]$$

C.
$$k \in (-\infty, 2 - 2\sqrt{6}) \cup (2 + 2\sqrt{6}, \infty)$$

D.
$$k \in (2 - 2\sqrt{6}, 2 + 2\sqrt{6})$$

Question 16

The graph with rule $f(x) = x^3 - 3x^2 + c$, $c \in \mathbb{R}$, has 3 distinct x-intercepts.

The set of all possible values of c is:

$$A. \mathbb{R}^+$$

C.
$$(-4,0)$$

D.
$$(0,4)$$

Question 17

For the parabola with the equation $y = ax^2 - 2bx + c$, the equation of the axis of symmetry is:

$$\mathbf{A.} \quad x = \frac{b}{a}$$

B.
$$x = -\frac{b}{a}$$

C.
$$y = c$$

D.
$$x = \frac{2b}{a}$$

Axis of symmetry at
$$x = -\frac{B}{2A}$$
 for $Ax^2 + Bx + C = 0$

Axis of symmetry of $ax^2 - 2bx + c = 0$ is at

$$x = -\frac{-2b}{2a} = \frac{b}{a}$$

The largest value of a such that the function $f:(-\infty,a]\to\mathbb{R}, f(x)=x^2-5x+6$, where f is one-to-one, is:

- **A.** 2.5
- **B.** 6
- C. -2.5
- **D.** −5

Question 19

The function $f(x) = \frac{1}{3}x^3 + mx^2 + nx + p$, for $m, n, p \in \mathbb{R}$, has turning points at x = -3 and x = 1 and passes through the point (3,4).

The values of m, n and p are:

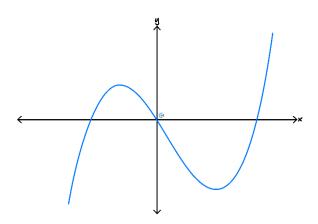
A.
$$m = 0, n = -\frac{7}{3}, p = 2$$

B.
$$m = 1, n = -3, p = -5$$

C.
$$m = -1, n = -3, p = 13$$

D.
$$m = \frac{5}{2}$$
, $n = 6$, $p = -\frac{83}{4}$

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = x(x-3)(x+2). Part of the graph of f is shown below:



Consider the point A(a, f(a)).

a. State the gradient of the graph of f at the point A in terms of a.

b. Hence, find the equation of the tangent to the graph of f at point A in the form y = mx + c.

In[95]:= Solve[y-f[a] == f'[a] (x - a), y]

Out[95]=
$$\{ \{ y \rightarrow a^2 - 2 a^3 - 6 x - 2 a x + 3 a^2 x \} \}$$
 $y = (3a^2 - 2a - 6)x - 2a^3 + a^2$

c. Find the value(s) of α where the tangent to f at A intersects the graph of f once.

$$In[99]:= Solve[f''[a] == 0, a]$$

$$Out[99]= \left\{ \left\{ a \rightarrow \frac{1}{3} \right\} \right\}$$

d. Let $h: \mathbb{R} \to \mathbb{R}$, $h(x) = (x - a)(x - b)^2$, where h(x) = f(x) + k and $a, b, k \in \mathbb{R}$.

Find the possible values of a and b.

```
In[105]:= (x - a) (x - b)^2 // Expand

Out[105]:= -a b^2 + 2 a b x + b^2 x - a x^2 - 2 b x^2 + x^3

In[107]:= \mathbf{f}[x] + \mathbf{k} // Expand

Out[107]:= \mathbf{k} - 6 x - x^2 + x^3

(*equating coefficients, we get*)

In[108]:= \mathbf{Solve}[\{-a - 2 b = -1, b^2 + 2 a b = -6\}, \{a, b\}]

Out[108]:= \{\{a \rightarrow \frac{1}{3} (1 + 2 \sqrt{19}), b \rightarrow \frac{1}{3} (1 - \sqrt{19})\}, \{a \rightarrow \frac{1}{3} (1 - 2 \sqrt{19}), b \rightarrow \frac{1}{3} (1 + \sqrt{19})\}\}
```

Must split both sets into separate cases.

Consider the function $p(x) = e^{-3x} - 4e^{-2x} + 2$.

a. Explain why p(x) is not a one-to-one function.

Some *y*-values have multiple corresponding *x*-values/fails the horizontal line test/minimum turning point.

The diagram below shows part of the graph of p.



b. Find the gradient of the tangent to the graph of p at x = a.

p'[a] -3 e^{-3 a} + 8 e^{-2 a}

c. Find the value(s) of a for which the tangent to f at x = a intersects p only at x = a.

 $Reduce \left[\left\{ p \text{ ''[a]} > 0 \text{, } p \text{ '[a]} \leq 0 \right\} \text{, a, Reals} \right] \text{ } // \text{ } N$

 $a \le -0.980829$

Slider tells us that this happens when the gradient is negative or $\boldsymbol{0}$ and the graph is concave up.

CONTOUREDUCATION

d. Find the smallest value of $q \in \mathbb{R}$, such that $f:[q,\infty) \to \mathbb{R}$, f(x)=p(x) is a one-to-one function.

```
Solve D[E^{-3 \times} - 4E^{-2 \times} + 2, \times] = 0, \times, \text{ Reals} // N
\{ \{x \rightarrow -0.980829 \} \}
```

- **e.** Consider the function $g: [-2,2] \to \mathbb{R}$, g(x) = p(x+k).
 - i. Find the value(s) of k such that the minimum of p occurs at x = -1.

```
In[129]:= Solve[p'[k-1] == 0, Reals]

Out[129]= \{ \{k \to 1 - 3 \log_e(2) + \log_e(3) \}

\therefore k = 1 - 3 \log_e(2) + \log_e(3)
```

ii. Find the value(s) of k such that the minimum of p occurs at x = -2.

```
Using a slider shows that increasing the value of k beyond this moves the turning point outside of the domain thus the minimum will still be at the endpoint k \ge 2 - 3 \log_e(2) + \log_e(3).
```


Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support			
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods". 			

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

