

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Family of Functions and its Exam Skills [2.6]

**Homework** 

#### Admin Info & Homework Outline:

| Student Name                |              |
|-----------------------------|--------------|
| Questions You Need Help For |              |
| Compulsory Questions        | Pg 2 — Pg 19 |



### Section A: Compulsory Questions



## <u>Sub-Section [2.6.1]</u>: Applying Family of Functions

| Qu  | Question 1                                                                                                    |  |
|-----|---------------------------------------------------------------------------------------------------------------|--|
| Cor | nsider the following family of functions $f(x) = e^{ax} - 1$ , $a > 0$ .                                      |  |
| a.  | Identify the "surname" (common aspect(s) of the family) and the "first name" (unique aspect(s) of the family) |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
| ı   |                                                                                                               |  |
| D.  | Hence, state what happens to the graph of $f$ in terms of a transformation when the value of $a$ increases.   |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
| Sp  | ace for Personal Notes                                                                                        |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |
|     |                                                                                                               |  |

MM34 [2.6] - Family of Functions and its Exam Skills - Homework





Consider the following family of functions  $f(x) = (x-2)^2 + k, k \in \mathbb{R}$ .

**a.** Show that the graph of f always has a stationary point at x = 2 and find the nature of this stationary point.

\_\_\_\_\_\_

**b.** Hence, identify the "surname(s)" and "first name(s)" of the family.

#### Question 3



Consider the family of functions  $f(x) = \sin\left(kx + \frac{\pi}{2}\right)$ ,  $k \in \mathbb{R}$ .

**a.** Identify the effects of k on the graph.



#### VCE Methods ¾ Questions? Message +61 440 138 726

| b. | Hence, identify the "surname" and "first name(s)" of the family.                    |
|----|-------------------------------------------------------------------------------------|
|    |                                                                                     |
|    | ·                                                                                   |
| c. | Express $f(x)$ without using sin when $k = \pm 1$ .                                 |
|    | Hint: List out the transformations and sketch the resulting graph if you get stuck! |
|    |                                                                                     |
|    |                                                                                     |
| Sp | pace for Personal Notes                                                             |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |
|    |                                                                                     |



Consider the family of functions  $f(x) = e^{ax} - ax + 1, a \in \mathbb{R}^+$ .

**a.** State one transformation that maps the graph of  $g(x) = e^x - x + 1$  onto the graph of f(x).

**b.** Identify a "surname" of the family.

**c.** Describe what happens to the shape of f(x) as a increases.

**d.** By plotting  $h(x) = f(x) - e^{ax}$  on the same axes as f(x), state the equation of the asymptote of f(x).





## <u>Sub-Section [2.6.2]</u>: Finding Unknowns for a Certain Number of Intersections

| Question 5                                                                                                             |                 |
|------------------------------------------------------------------------------------------------------------------------|-----------------|
| Find the value of a where $a \in \mathbb{R}$ such that the graph of $f(x) = e^x + a$ intersects the line $y = a$       | x exactly once. |
| ·                                                                                                                      |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
| Question 6                                                                                                             | اً (رُ          |
| Consider the functions $f: \mathbb{R} \to \mathbb{R}$ , $f(x) = e^x + a$ where $a \in \mathbb{R}$ and $g(x) = x - 3$ . |                 |
| a. Find the inverse function of $f(x)$ .                                                                               |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
| ·                                                                                                                      |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |
|                                                                                                                        |                 |



#### VCE Methods ¾ Questions? Message +61 440 138 726

| Find the value of $a$ such that the graph of $f^{-1}(x)$ intersects with $g(x)$ exactly once.    The proof of the value of $a$ such that the graph of $f^{-1}(x)$ intersects with $g(x)$ exactly once.    The proof of the value of $a$ such that the graph of $a$ intersect is with $g(x)$ exactly once.    The proof of the value of $a$ is intersect exactly once.    The proof of the value of $a$ is intersect exactly once.    The proof of the value of $a$ is intersect exactly once.    The proof of $a$ is intersect exactly once.    The proof of $a$ is intersect exactly once.    The proof of $a$ is intersect exactly once. |      |                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------|
| nestion 7  onsider the functions $f: [-4,4) \to \mathbb{R}$ , $f(x) = x^2 + 1$ and $g(x) = mx$ , $m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h i  | Find the value of a such that the graph of $f^{-1}(x)$ intersects with $a(x)$ exactly once                                              |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D. 1 | This the value of $a$ such that the graph of $f(x)$ intersects with $g(x)$ exactly office.                                              |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| onsider the functions $f: [-4,4) \to \mathbb{R}, f(x) = x^2 + 1$ and $g(x) = mx, m \in \mathbb{R}$ . Find the value(s) of $m$ where $f$ d $g$ intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                         |
| d g intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ue   | stion 7                                                                                                                                 |
| d g intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                         |
| d g intersect exactly once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on   | sider the functions $f: [-4,4) \to \mathbb{R}$ , $f(x) = x^2 + 1$ and $g(x) = mx$ , $m \in \mathbb{R}$ . Find the value(s) of m where f |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıu , | g intersect exactly once.                                                                                                               |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| Dace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| Dace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| Dace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| Dace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| Dace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                         |
| pace for Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | בח   | ce for Personal Notes                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | υO   |                                                                                                                                         |

7



|                                            | ctive.                                                                                                                   |     |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----|
| onsider the function on tersect exactly on | on $f: [k, \infty) \to \mathbb{R}$ , $f(x) = (x - k)^2 + 4$ . Find the value(s) of $k$ such that $f(x)$ and its inverse. | rse |
| dersect exactly on                         |                                                                                                                          |     |
|                                            |                                                                                                                          | -   |
|                                            |                                                                                                                          | _   |
|                                            |                                                                                                                          |     |
|                                            |                                                                                                                          | -   |
|                                            |                                                                                                                          | -   |
|                                            |                                                                                                                          |     |
|                                            |                                                                                                                          | _   |
|                                            |                                                                                                                          | -   |
|                                            |                                                                                                                          | _   |
|                                            |                                                                                                                          |     |
|                                            |                                                                                                                          | -   |
|                                            |                                                                                                                          |     |
|                                            |                                                                                                                          |     |
|                                            |                                                                                                                          |     |
|                                            |                                                                                                                          |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |
| pace for Persona                           | al Notes                                                                                                                 |     |





## <u>Sub-Section [2.6.3]</u>: Finding Unknowns for Maximums and Minimums

**NOTE:** This entire section can be done tech-active.

| Question 9                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------|--|
| For what value of $k \in \mathbb{R}$ , will the function, $f(x) = 2x + e^{kx}$ have a minimum on the x-axis? |  |
|                                                                                                              |  |
|                                                                                                              |  |
|                                                                                                              |  |
|                                                                                                              |  |
|                                                                                                              |  |

#### **Question 10**



For what value(s) of  $k \in \mathbb{R}$  will the function  $f(x) = (x - k)^2 \log_e(x)$  have a minimum at x = 4?





| <b>Question</b> | 11 |  |
|-----------------|----|--|
| Question        | 11 |  |



Find the value(s) of  $k \in \mathbb{R}$  such that the minimum of the function  $f: [-4,10] \to \mathbb{R}$ ,  $f(x) = 3\left(\frac{x}{2} - 3k\right)^2 - 6$ occurs at x = -4.





## **Sub-Section**: Exam 1 Questions

| Question 12                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Consider the function $f:[a,\infty) \to \mathbb{R}$ , $f(x)=x^2-4x+k$ , $k \in \mathbb{R}$ , where $a$ is a real constant that ensures $f$ is a one-to-one function. |  |
| <b>a.</b> Find the smallest possible value of $a$ .                                                                                                                  |  |
|                                                                                                                                                                      |  |
|                                                                                                                                                                      |  |
|                                                                                                                                                                      |  |
| <b>b.</b> Find the value of $k$ such that $y = 4x$ is a tangent to the graph of $f$ .                                                                                |  |
|                                                                                                                                                                      |  |
|                                                                                                                                                                      |  |
|                                                                                                                                                                      |  |
|                                                                                                                                                                      |  |
|                                                                                                                                                                      |  |
|                                                                                                                                                                      |  |

| <b>c.</b> Find the value(s) of $k$ such that the graphs of $f$ and $f^{-1}$ do not intersect. |  |
|-----------------------------------------------------------------------------------------------|--|
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |
| Question 13                                                                                   |  |
| Consider the function $f(x) = ae^x + k$ , where $a \in \mathbb{R}^+$ and $k \in \mathbb{R}$ . |  |
| Let the point $P$ be the $y$ -intercept of the graph of $f(x)$ .                              |  |
| <b>a.</b> State the coordinates of the point $P$ in terms of $a$ and $k$ .                    |  |
|                                                                                               |  |
|                                                                                               |  |
| <b>b.</b> Find the gradient of $f$ at $P$ in terms of $a$ .                                   |  |
|                                                                                               |  |
|                                                                                               |  |
|                                                                                               |  |

| c.                                                                                        | Given that the graph of $y = f(x)$ passes through the origin, express $k$ in terms of $a$ .             |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
| d.                                                                                        | Given that the graph of $f$ also goes through the point $(1,3(e-1))$ , find the values of $a$ and $k$ . |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
| Qu                                                                                        | Question 14                                                                                             |  |  |  |  |  |
| Consider the function $f(x) = x^2 + ax + b$ .                                             |                                                                                                         |  |  |  |  |  |
| Find the value(s) of $a, b \in \mathbb{R}$ such that $f(x)$ has a turning point at (1,4). |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |
|                                                                                           |                                                                                                         |  |  |  |  |  |



## Sub-Section: Exam 2 Questions



#### **Question 15**

The graph of y = kx + 2 intersects the graph of  $y = 2x - 3x^2$  at 2 distinct points for:

- **A.** k = 2
- **B.**  $k \in [2 2\sqrt{6}, 2 + 2\sqrt{6}]$
- C.  $k \in (-\infty, 2 2\sqrt{6}) \cup (2 + 2\sqrt{6}, \infty)$
- **D.**  $k \in (2 2\sqrt{6}, 2 + 2\sqrt{6})$

#### **Ouestion 16**

The graph with rule  $f(x) = x^3 - 3x^2 + c$ ,  $c \in \mathbb{R}$ , has 3 distinct x-intercepts.

The set of all possible values of c is:

- $A. \mathbb{R}^+$
- **B.** [0,4]
- C. (-4,0)
- **D.** (0,4)

#### **Question 17**

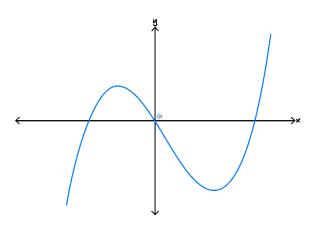
For the parabola with the equation  $y = ax^2 - 2bx + c$ , the equation of the axis of symmetry is:

- **A.**  $x = \frac{b}{a}$
- **B.**  $x = -\frac{b}{a}$
- C. y = c
- **D.**  $x = \frac{2b}{a}$

The largest value of a such that the function  $f:(-\infty,a]\to\mathbb{R}, f(x)=x^2-5x+6$ , where f is one-to-one, is:

- **A.** 2.5
- **B.** 6
- C. -2.5
- **D.** −5

#### **Question 19**


The function  $f(x) = \frac{1}{3}x^3 + mx^2 + nx + p$ , for  $m, n, p \in \mathbb{R}$ , has turning points at x = -3 and x = 1 and passes through the point (3,4).

The values of m, n and p are:

- **A.**  $m = 0, n = -\frac{7}{3}, p = 2$
- **B.** m = 1, n = -3, p = -5
- C. m = -1, n = -3, p = 13
- **D.**  $m = \frac{5}{2}$ , n = 6,  $p = -\frac{83}{4}$



Let  $f: \mathbb{R} \to \mathbb{R}$ , f(x) = x(x-3)(x+2). Part of the graph of f is shown below:



Consider the point A(a, f(a)).

**a.** State the gradient of the graph of f at the point A in terms of a.

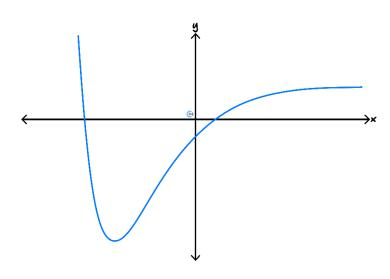
**b.** Hence, find the equation of the tangent to the graph of f at point A in the form y = mx + c.

| c | Find the value(s) of $a$ where the tangent to $f$ at $A$ intersects the graph of $f$ once |  |
|---|-------------------------------------------------------------------------------------------|--|

\_\_\_\_\_



#### VCE Methods 3/4 Questions? Message +61 440 138 726


| d. | Let $h: \mathbb{R} \to \mathbb{R}$ , $h(x) = (x - a)(x - b)^2$ , where $h(x) = f(x) + k$ and $a, b, k \in \mathbb{R}$ . |
|----|-------------------------------------------------------------------------------------------------------------------------|
|    | Find the possible values of $a$ and $b$ .                                                                               |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |

Consider the function  $p(x) = e^{-3x} - 4e^{-2x} + 2$ .

**a.** Explain why p(x) is not a one-to-one function.

\_\_\_\_\_

The diagram below shows part of the graph of p.



**b.** Find the gradient of the tangent to the graph of p at x = a.

**c.** Find the value(s) of a for which the tangent to f at x = a intersects p only at x = a.

| <b>d.</b> Find the smallest value of $q \in \mathbb{R}$ , such that $f:[q,\infty) \to \mathbb{R}$ , $f(x)=p(x)$ is a one-to-one function. |     |                                                                            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------|--|--|--|--|
| -                                                                                                                                         |     |                                                                            |  |  |  |  |
| -                                                                                                                                         |     |                                                                            |  |  |  |  |
| _                                                                                                                                         |     |                                                                            |  |  |  |  |
| _                                                                                                                                         |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
| e. (                                                                                                                                      | Cor | nsider the function $g: [-2,2] \to \mathbb{R}, g(x) = p(x+k)$ .            |  |  |  |  |
| j                                                                                                                                         | i.  | Find the value(s) of $k$ such that the minimum of $p$ occurs at $x = -1$ . |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
| J                                                                                                                                         | 11. | Find the value(s) of $k$ such that the minimum of $p$ occurs at $x = -2$ . |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |
|                                                                                                                                           |     |                                                                            |  |  |  |  |



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

### VCE Mathematical Methods ¾

# Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                             | <u>Text-Based Support</u>                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Book via bit.ly/contour-methods-consult-2025 (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message <u>+61 440 138 726</u> with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |

Booking Link for Consults
bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

