CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾ Applications of Differentiation Exam Skills [2.5]

Workbook

Outline:

Recap Pg 2-14 Pg 27-31 Exam 1 Warm-Up Test Pg 32-41 Pg 15-18 **Tech-Active Exam Skills** Finding Tangents/Normals **Application of Differentiation** Finding Minimum/Maximum Pg 19-26 Newton's Method Exam Skills Finding Tangents/Normals That Passes Finding Tangents/Normals That Passes Through a Point Through a Point Finding Tangents/Normals with Coordinate Finding x₀ Values for an Oscillating Geometry Sequence Finding Maximum/Minimum Instantaneous Rate of Change Exam 2 Pg 42-48

Learning Objectives:

MM34 [2.5.1] - Advanced Tangents and Normal Questions

MM34 [2.5.2] - Advanced Maximum/Minimum Questions

Section A: Recap

A

If you were here last week skip to Section B Warmup Test.

Tangents

- A tangent is a linear line which just touches the curve.
- The gradient of a tangent line has to be equal to the gradient of the curve at the intersection.

$$y = f(x)$$
(a, $f(a)$)

$$m_{tangent} = f'(a)$$

Question 1

Find the equation of the tangent to $f(x) = x^2 + 4$ at x = 2.

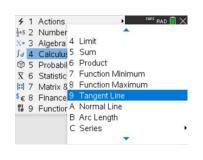
Calculator Commands: Finding tangents on CAS

<u>e</u>

- Mathematica
- << SuiteTools`

TangentLine[f[x], x, a]

- > TI-Nspire
 - Menu 4 9



tangentLine(f(x),x,a)

Casio Classpad

tangentLine(f(x),x,a)

Question 2 Tech-Active.

Find the equation of the tangent to $y = \sin(x)$ at $x = \frac{\pi}{6}$.

CONTOUREDUCATION

Normals

- A normal is a linear line which is perpendicular to the tangent.
- The gradient of a normal line has to be equal to the **negative reciprocal** of the gradient of the curve at the intersection.

$$y = f(x)$$

$$(a, f(a))$$

$$Normal$$

$$m_{normal} = -\frac{1}{g(x)}$$

Question 3

Find the equation of the normal to $f(x) = x^3 - 3x^2 + 5$ at x = 1.

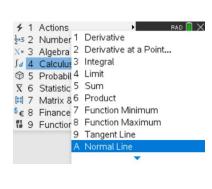
Calculator Commands: Finding normals on CAS

Mathematica

<< SuiteTools`

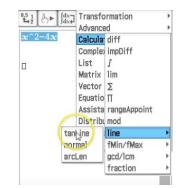
NormalLine[f[x], x, a]

- TI-Nspire
 - Menu 4 A



normalLine(f(x),x,a)

Casio Classpad



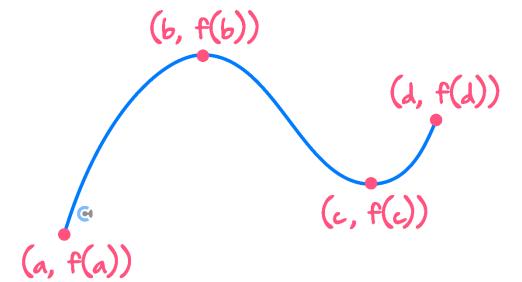
normalLine(f(x),x,a)

Question 4

Find the equation of the normal to $y = e^{2x}$ at x = 0.

Absolute Maximum and Minimum

- Absolute Maxima/Minima are the overall largest/smallest y-values for the given domain.
- They occur at either an endpoint or a turning point.



Absolute Min: f(a)

Absolute Max: f(b)

- Steps
 - 1. Find stationary points and endpoints.
 - **2.** Find the largest/lowest y-value for max/min.

Question 5

Find the maximum and minimum value of the function given below.

$$f: [-2,2] \to R, f(x) = x^3 - 3x + 4$$

NOTE: Find the endpoints and the turning points. Pick the largest y value for max and the smallest y-value for the min.

Calculator Commands: Finding Absolute Max and Min for $x \in [a, b]$

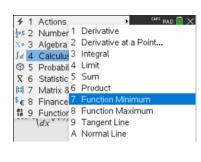
Mathematica

Maximize[$\{f[x], a \le x \le b\}, x$]

Minimize[$\{f[x], a \le x \le b\}, x$]

> TI-Nspire

Menu 4 7 and Menu 4 8



fMax(f(x),x,a,b)

fMin(f(x),x,a,b)

Casio Classpad

fMax(f(x),x,a,b)

fMin(f(x),x,a,b)

Question 6 Tech-Active.

Find the maximum and minimum value of the function given below.

$$f: [-5,2] \to R, f(x) = 2x^3 + 3x^2 - 72x - 16$$

Definition

Optimisation Problems

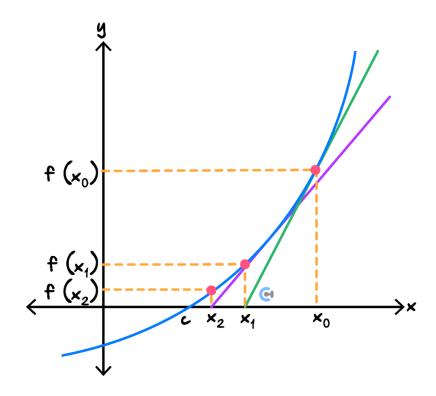
- Applying absolute maxima and minima in a real-world setting.
- Steps
 - 1. Construct a function for the subject you want to find the maximum or minimum of.
 - 2. Find its domain if appropriate.
 - **3.** Find its endpoints and turning points.
 - **4.** Identify the maximum or minimum y-value.

Question 7

Find the minimum vertical distance between the functions $f(x) = x^2 + 16$ and g(x) = x - 10.

Newton's Method

 \blacktriangleright It is a method of approximating the x-intercept using tangents.



$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

CONTOUREDUCATION

Steps

- **1.** Find the tangent at the x-value given.
- **2.** Find the x-intercept of the tangent using an iterative formula.
- **3.** Find the next tangent at the x = x-intercept of the previous tangent.
- **4.** Repeat until the value doesn't change by much.

Question 8 Walkthrough. Tech-Active.

Consider the function $f(x) = x^3 - 5$.

a. Show that Newton's method gives the iterative formula $x_{n+1} = \frac{2x_n^3 + 5}{3x_n^2}$.

b. Find the approximation of *x*-intercept of f(x) giving your answer correct to 4 decimal places. Start $x_0 = 2$.

Tolerance

Definition: The maximum difference between x_n and x_{n+1} we can have when we stop the iteration.

We stop when $|x_{n+1} - x_n| < Tolerance$.

The question will give us the tolerance level.

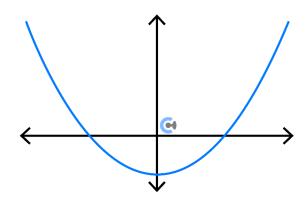
Question 9 Tech-Active.

Find the root of $f(x) = x^3 - 12$ using Newton's method with a tolerance of 0.01 and initial value of 3. Give your answer correct to two decimal places.

When does Newton's method not work?

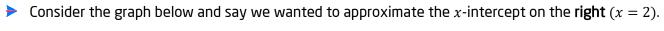
Exploration: 1. Terminating Sequence

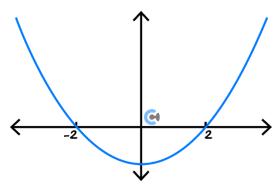
Consider the graph below.



- \blacktriangleright What happens when $x_0 = 0$?
- \blacktriangleright Hence, when Newton's method reaches the x-value of the stationary point, it _______.

Exploration: 2. Approximating the Wrong Root

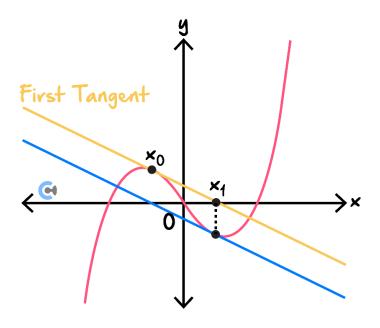




- ▶ What happens when $x_0 = -1$, do we approximate x = -2 or x = 2? [-2/2]
- When Newton's method starts at the wrong side of the turning point, it can approximate the

Exploration: 3. Oscillating Sequence

Consider the graph.



- \blacktriangleright What is the value of x_2 , the next term of the sequence?
- \rightarrow Hence, would Newton's method approximation get closer to the actual x-intercept at x = 0? [Yes/No]

Limitation of Newton's Method

- Terminating Sequence: Occurs when we hit a stationary point.
- Approximating a Wrong Root: Occurs when we start on the wrong side.
- Oscillating Sequence: Occurs when we oscillate between two values without getting closer to the real root.

Question 10 Tech-Active.

Consider the function $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

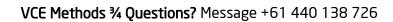
a. Perform three iterations of Newton's method with starting point x = 1.

b. What limitation of Newton's method did we get here?

Section B: Warm Up Test (15 Marks)

INSTRUCTION: 15 Marks.15 Minutes Writing.

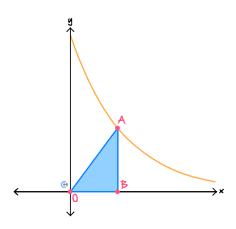
Find the equation of th	ne line that is normal	to $y = x^3 - 4x$	$x^2 + 6x \text{ at } x = 1$		
•		•			
					-
				 	-
				 	-
				 	_
					_
					_
				 	-
Space for Personal N	lotes				
space for refsorial r	T OLES				



Question 12 (3 marks)				
Consider the function $f:(1,\infty)\to R$, $f(x)=\frac{4}{x-1}$. Find the equation of the line tangent to f that is parallel to $y=8-x$.				
, ,				

Question 13 (4 marks)

Consider the function $f(x) = e^{-3x}, x > 0$.



A triangle has vertices OAB, as shown in the diagram below, with coordinates O(0,0), A(a, f(a)), and B(a, 0), where a > 0.

a. Find the area A of triangle OAB in terms of a. (1 mark)

b. Find the value of a for which A is maximised. (2 marks)

c. Hence, find the maximum area of *OAB*. (1 mark)

CONTOUREDUCATION

Question 14 (6 marks)

Consider the function $f(x) = x^3 - 3x$. Newton's method is used to approximate a root of this function.

a. Using Newton's method, an expression for x_{n+1} is:

$$x_{n+1} = \frac{ax_n^3}{b(x_n^2 - 1)}$$

Find the values of a and b. (3 marks)

b. Explain why $x_0 = 1$ will be a bad starting point. (1 mark)

c. Find x_1 if $x_0 = 2$. (1 mark)

d. Write down the surd that Newton's method approximates when used on the function f with $x_0 = 2$. (1 mark)

Section C: Application of Differentiation Exam Skills

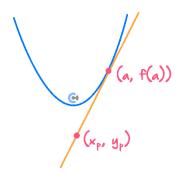
Sub-Section: Finding Tangents/Normals Which Passes Through a Point

<u>Discussion:</u> If the question didn't give us the point where the tangent/normal was made but rather a random point it passes through, how do we solve for the tangent/normal?

Definition

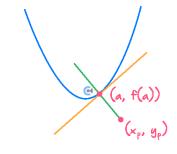
Finding Tangents/Normals to Functions, which also pass through a given point

► Tangent of f(x) at x = a passes through (x_p, y_p) .



$$f'(a) = \frac{f(a) - y_p}{a - x_p}$$

Normal of f(x) at x = a passes through (x_p, y_p) .



$$-\frac{1}{f'(a)} = \frac{f(a) - y_p}{a - x_p}$$

NOTE: We simply equate the gradient (rise/run) with the gradient of tangents/normals.

Question 15 Walkthrough.

Find the tangent(s) of $f(x) = x^2 + 4$ that pass(es) through (0,0).

Question 16

Find the equation of the tangent to $f(x) = e^x$ which passes through (0,0).

Question 17		

Find the equation of the normal to $f(x) = \log_e(x - 1)$ which passes through (0,2).

Space for Personal Notes

21

Sub-Section: Finding Tangents/Normals with Coordinate Geometry

REMINDER: Parallel and Perpendicular Lines

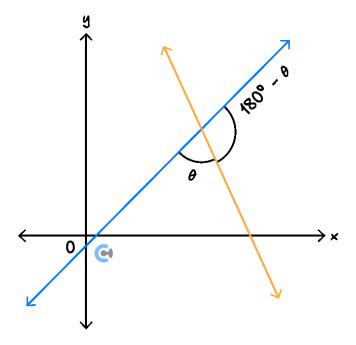
$$m_1 = m_2$$

Parallel lines have the same gradient.

$$m_1 = -\frac{1}{m_2}$$

> Gradients of perpendicular lines are negative reciprocals of each other.

REMINDER: Acute Angle Between Two Lines



$$\theta = |\tan^{-1}(m_1) - \tan^{-1}(m_2)|$$

Alternatively:

$$\tan(\theta) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Finding Tangents/Normals with Coordinate Geometry

- 1. Using derivative = gradient of the tangent, find the point where the tangent is made.
- 2. Find the tangent.

Question 18 Walkthrough.

Find the tangent of $f(x) = x^2 + 4x + 6$ that is parallel to the line y = 2x + 2.

NOTE: Gradient of the tangent is always equal to the derivative.

Question 19

Find the tangent of $f(x) = -x^2 + 3x + 2$ that is perpendicular to the line $y = \frac{1}{3}x + 3$.

Question 20

Find the tangent of $f(x) = \frac{1}{2}x^2 + 2x + 3$ that makes an angle of 60 degrees with the positive x-axis.

Question 21 Extension. Tech Active.

Find the equation of the tangent to $f(x) = -\frac{1}{2}x^2 + 4x + 2$ that makes an angle of 60 degrees with the line y = x + 3 and has a gradient less than -1. Give your answer correct to two decimal places.

<u>Sub-Section</u>: Finding Maximum/Minimum Instantaneous Rate of Change

<u>Finding Maximum/Minimum Instantaneous Rate of Change</u>

Definition

Find the turning point of the ______ function.

Question 22 Walkthrough.

Find the maximum instantaneous rate of change of $f(x) = -x^3 + 3x^2 + 4x + 3$.

Question 23

A hill is modelled by the function $f: [0,3] \to R$, $f(x) = x^3 - 6x^2 + 8x + 4$. Find the value of x for which the gradient of the hill is smallest and state this smallest gradient.

Section D: Exam 1 (20 Marks)

INSTRUCTION: 20 Marks. 25 Minutes Writing.

Question 24 (3 marks)

Newton's method is used to estimate the x-intercept of the function $f(x) = \frac{1}{3}x^3 + 4x + 6$.

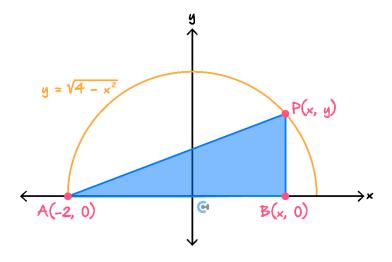
a. Verify that f(-1) > 0 and f(-2) < 0. (1 mark)

b. Using an initial estimate of $x_0 = -1$, find the value of x_1 . (2 marks)

Question 25 (5 marks)
Let P be the point on the straight line $y = 2x - 6$ such that the length of OP, the line segment from the origin O to P, is a minimum.
a. Find the coordinates of <i>P</i> . (3 marks)
b. Find the distance <i>OP</i> . Express your answer in the form $\frac{a\sqrt{b}}{b}$, where a and b are positive integers. (2 marks)
,
Space for Personal Notes

Question 26 (4 marks)

The graph of the relation $y = \sqrt{4 - x^2}$ is shown on the axes below. *P* is a point on the graph of this relation, *A* is the point (-2,0) and *B* is the point (x,0).



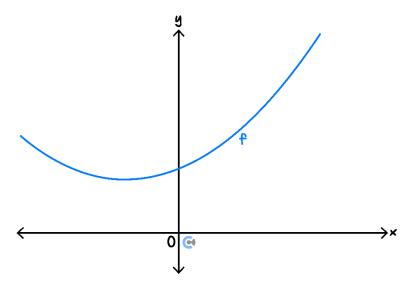
a. Find an expression for the length PB in terms of x only. (1 mark)

h	Find the maximum area of the triangle <i>ABP</i> .	(3 marks)
~	i ind the maximum area of the transferrible.	() IIIuI Ko /

Question 27 (8 marks)

Consider the function $f(x) = x^2 + 2x + 6$ and the point P(1,0). Part of the graph of y = f(x) is shown below.

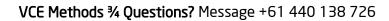


a. Show that point *P* is not on the graph of y = f(x). (1 mark)

b. Consider a point Q(a, f(a)) to be a point on the graph of f.

i.	Find the slope of the line connecting points P and Q in terms of a . (1 mark)

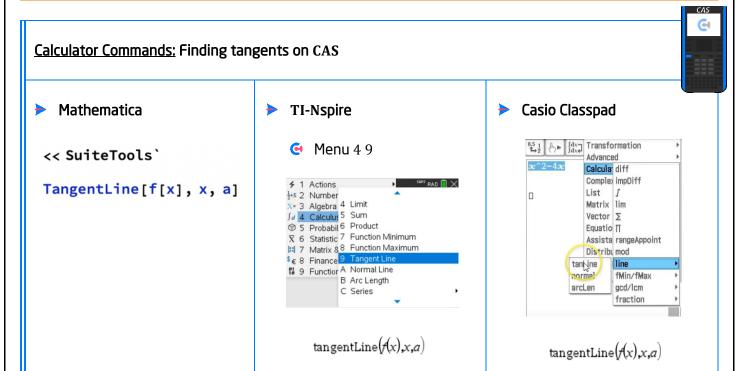
ii. Find the slope of the tangent to the graph of f at point Q in terms of a. (1 mark)

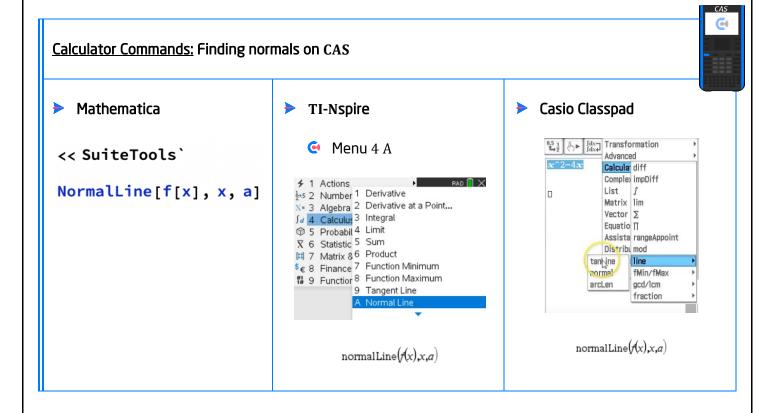


iv	. Give the equation of the line with a positive gradient and passing through point P that is tangent to the graph of f . (1 mark)
	nd the value, k , that gives the shortest possible distance between the graph of the function $y = f(x - k)$ d point P . Also, state this minimum distance. (2 marks)

Section E: Tech-Active Exam Skills

Sub-Section: Finding Tangents/Normals





Question 28

Find the tangent to $f(x) = x^3 + 2x - 3$ when x = 1.

Sub-Section: Finding Minimum/Maximum

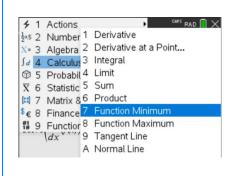
<u>Calculator Commands:</u> Finding Absolute Max and Min for $x \in [a, b]$

Mathematica

Maximize[$\{f[x], a \le x \le b\}, x$] Minimize[$\{f[x], a \le x \le b\}, x$]

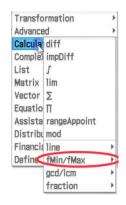
TI-Nspire

Menu 4 7 and Menu 4 8



fMax(f(x),x,a,b) fMin(f(x),x,a,b)

Casio Classpad



fMax(f(x),x,a,b) fMin(f(x),x,a,b)

Question 29

Consider the function $f: [-2,3] \rightarrow R$, $f(x) = x^3 - 4x^2 - 6x + 4$.

a. Find the maximum and minimum values of f.

b. Find the maximum and minimum gradient of f.

Sub-Section: Newton's Method

Calculator Commands: Newton's Method on Technology

- Consider finding a root to $f(x) = x^3 2$ with initial value $x_0 = 1$.
- Mathematica.

In[531]:=
$$f[x_{-}] := x^{3} - 2$$

In[533]:= $n[x_{-}] := x - \frac{f[x]}{f'[x]}$

Out[534]=
$$\frac{2(1+x^3)}{3x^2}$$

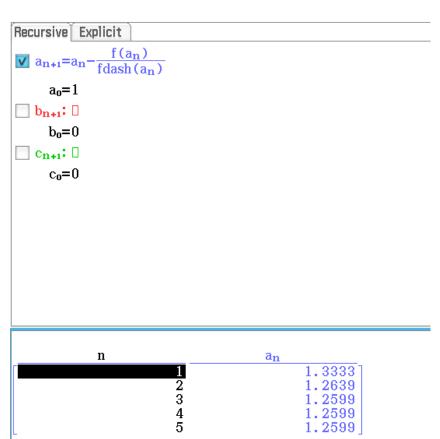
In[537]:= For
$$\left[i=1; x=1, i < 5, i++, x=\frac{2\left(1.0+x^3\right)}{3x^2}; Print[x]\right]$$
1.33333
1.26389
1.25993

1.25992

TI. Define the n(x) function then keep iterating by putting your previous value back into n(x).

Define $f(x)=x^3-2$	Done
$x - \frac{f(x)}{\frac{d}{dx}(f(x))}$	$\frac{2 \cdot \left(x^3 + 1\right)}{3 \cdot x^2}$
Define $n(x) = \frac{2 \cdot (x^3 + 1)}{3 \cdot x^2}$	Done
n(1)	1.33333
n(1.333333333333333333333333333333333333	1.26389
n(1.2638888888889)	1.25993

- Classpad.
 - Under Sequences.



Question 30

Perform two iterations of Newton's method to approximate a root of $f(x) = x^3 - 7$ with the initial value $x_0 = 2$.

Sub-Section: Finding Tangents/Normals Which Passes Through a Point

<u>Calculator Commands:</u> Suppose we want to find the equation of a tangent/normal to the graph of f(x) that passes through the point $P(x_1, y_1)$.

- Steps:
 - **1.** Find the equation of the tangent to f(x) at arbitrary point x = a.
 - **2.** Let this tangent line be t(x).
 - **3.** Solve the equation $t(x_1) = y_1$ to find possible value(s) of a.
 - **4.** Find the equation of the tangent at x = a.
- Similar procedure for the normal line.
- **Example:** Find the equation of a tangent to $f(x) = x^3 2x$ that passes through the point (0,2).

In[564]:=
$$f[x_{-}] := x^3 - 2x$$

In[565]:= TangentLine[$f[x]$, {x, a}]
Out[565]:= $-2 a^3 + (-2 + 3 a^2) x$
In[566]:= $t[x_{-}] := -2 a^3 + (-2 + 3 a^2) x$
In[568]:= Solve[$t[0] := 2$, a, Reals]
Out[568]:= $\{\{a \to -1\}\}$
In[570]:= $t[x] /. a \to -1$
Out[570]:= $2 + x$
In[571]:= TangentLine[$f[x]$, {x, -1}]
Out[571]:= $2 + x$

On	estion	31

Find the equation of a tangent to $f(x) = x^3 - 2x$ that passes through the point (2,0) and has y-intercept between y = -3 and y = 0.

<u>Sub-Section</u>: Finding x_0 Values for an Oscillating Sequence

<u>Newton's Method:</u> Finding x_0 values which result in an oscillating sequence.

- > Step 1: Define $n(x) = x \frac{f(x)}{f'(x)}$
- **Step 2:** Solve n(n(x)) = x
- > Step 3: Reject the roots of the function.

Question 32 Walkthrough (Tech Active)

Find the x_0 values that give an oscillating sequence when trying to find a root to the function $f(x) = x^3 - 5x$ using Newton's method.

Onestion	33	(Tech	Active)

Find the x_0 values that give an oscillating sequence when trying to find a root to the function $f(x) = x^3 - 12x$ using Newton's method.

Section F: Exam 2 (25 Marks)

INSTRUCTION: 25 Marks. 30 Minutes Writing.

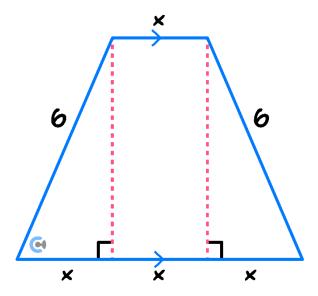
Question 34 (1 mark)

Find the equation of the tangent to $f(x) = x^2 + 3x + 1$, which makes an angle of 45° with the positive x-axis.

- **A.** y = x + 1
- **B.** y = x
- C. y = -x 1
- **D.** y = 2x + 1

Question 35 (1 mark)

Find the value of x that maximises the area of the trapezium below.



- **A.** $3\sqrt{2}$
- **B.** 3
- **C.** 6
- **D.** $4\sqrt{2}$

Question 36 (1 mark)

The tangent to the graph of $y = x^3 - ax^2 + 3$ at x = 1 passes through (-2, 0). The value of a is:

- **A.** $\frac{1}{2}$.
- **B.** 1.
- C. $\frac{3}{2}$
- **D.** 2.

Question 37 (1 mark)

The maximum instantaneous rate of change of the function $f: [-1,2] \to \mathbb{R}$, $f(x) = -x^4 + 3x^2 + 2x$, correct to two decimal places is:

- **A.** 0.70.
- **B.** 2.53.
- **C.** 4.83.
- **D.** 4.84.

Question 38 (1 mark)

Newton's method is used to find a root of the function $f(x) = x^3 - 9x$. Which of the following values of x_0 will lead to an oscillating sequence?

- **A.** $x_0 = 1$
- **B.** $x_0 = \frac{3}{\sqrt{5}}$
- C. $x_0 = \frac{2}{\sqrt{3}}$
- **D.** $x_0 = \frac{5}{\sqrt{3}}$

Question 39 (1 mark)

Extension. A box is formed from a rectangular sheet of cardboard, which has a width of 2a units and a length of b units, by first cutting out squares of side length x units from each corner and then folding upwards to form a container with an open top.

The maximum volume of the box occurs when x is equal to:

- $\mathbf{A.} \ \frac{a+b-\sqrt{a^2-ab+b^2}}{6}.$
- **B.** $\frac{2a+b+\sqrt{4a^2-2ab+b^2}}{6}$.
- $\mathbf{C.} \ \frac{2a-b-\sqrt{a^2-ab+b^2}}{6}.$
- **D.** $\frac{2a+b-\sqrt{4a^2-2ab+b^2}}{6}$

Space	for	Personal	Notes

Question 40 (10 marks)

Let $h: \mathbb{R} \to \mathbb{R}$, $h(x) = 4^x - x^4$.

a. Determine the number of inflection points that h has. (1 mark)

b. Find the largest interval of *x* values for which *h* is strictly decreasing. Give your answer correct to two decimal places. (1 mark)

c. Apply Newton's method, with an initial estimate of $x_0 = 0$, to find an approximate x-intercept of h. Write the estimates x_1, x_2 and x_3 in the table below, correct to three decimal places. (2 marks)

x_0	0
x_1	
x_2	
<i>x</i> ₃	

d. For the function h, explain why a solution to the equation $4^x \log_e(4) - 4x^3 = 0$ should not be used as an initial estimate for x_0 in Newton's method. (1 mark)

VCE Methods ¾ Questions? Message +61 440 138 726

e.	There is a positive real number n for which the function $f(x) = n^x - x^n$ has a local minimum on the x -axis.
	Find this value of n . (2 marks)
f.	Extension. Newton's method is used to approximate a root to the function $g(x) = x^3 - 7x$.
	Find the initial values of x_0 that will result in an oscillating sequence. (3 marks)
	,
	
	··
	·
	
	
Sp	ace for Personal Notes

Question 41 (9 marks)

Let
$$f(x) = \log_e(x^2 - 4) - \log_e(2 - x)$$
.

a. State the maximal domain and the range of f. (2 marks)

b.

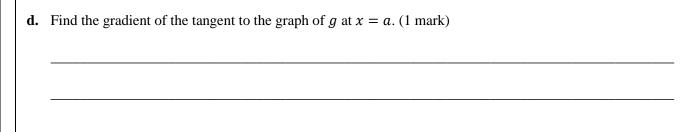
i. Find the equation of the tangent to the graph of f when x = -3. (1 mark)

ii. Find the equation of the line that is perpendicular to the graph of f when x = -3 and passes through the point (-3,0). (1 mark)

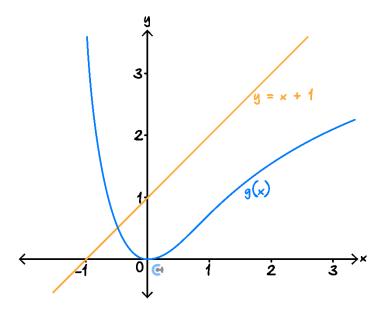
Let
$$g(x) = e^{-2x} - 4e^{-x/2} + 3$$
.

c. Explain why g is not a one-to-one function. (1 mark)

CONTOUREDUCATION



The diagram below shows parts of the graph of g and the line y = x + 1.



The line y = x + 1 and the tangent to the graph of g at x = a intersect with an acute angle of θ between them.

e.	Find the value(s) of a for which $\theta = 60^{\circ}$. Give your answer(s) correct to two decimal places. (3 marks)	

Contour Checklist

□ <u>Learning Objective</u>: [2.5.1] - Advanced Tangents and Normal Questions

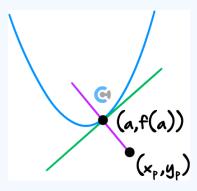
Key Takeaways

- Finding tangents/normals to functions, which also pass through a given point
- ☐ Tangent of f(x) at x = a passes through (x_p, y_p) .



$$f'(a) =$$

■ Normal of f(x) at x = a passes through (x_p, y_p) .



$$-\frac{1}{f'(a)} = \underline{\hspace{1cm}}$$

Learning Objective	: [2.5.2] - Advanced Maximum/Minimum (Duestions.
--------------------	----------	--------------------------------	------------

Key Takeaways

To find the maximum/minimum instantaneous rate of change, we find the turning point of the ______ function.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

