

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Mathematical Methods ¾ Applications of Differentiation [2.4]

Workbook

#### **Outline:**

# Tangents and Normals Pg 2-9 Tangents Newton's Method Pg 18-32 Introduction to Newton's Method Minimising Error Optimisation Pg 10-17 Pg 10-17 Tolerance

Limitation of Newton's Method

#### Absolute Minimum and Maximum

Optimisation Problems

## Learning Objectives:

MM34 [2.4.1] - Find Tangents and Normal
 MM34 [2.4.2] - Find Minimum and Maximum
 MM34 [2.4.3] - Apply Newton's Method to Find the Approximation of a Root and its Limitations



#### **Section A:** Tangents and Normals

#### **Sub-Section**: Tangents

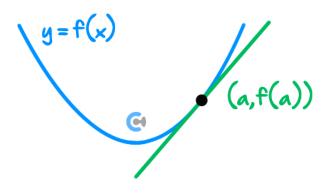


#### What are tangent lines?



#### **Tangents**

- A tangent is a linear line which just touches the curve.
- The gradient of a tangent line has to be equal to the gradient of the curve at the intersection.



 $m_{tangent} =$ 

#### Question 1 Walkthrough.

Find the equation of the tangent to  $f(x) = x^2 + 4$  at x = 2.



| Question | 1 |
|----------|---|
| Chiesmon |   |

Find the equation of the tangent to  $y = \sin(x)$  at  $x = \frac{\pi}{6}$ .



| Question 3 Extension.                                                                             |  |
|---------------------------------------------------------------------------------------------------|--|
| Let $f(x) = xe^x$ , find the equation of the line tangent to $f(x)$ that has a gradient of $2e$ . |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
| Space for Personal Notes                                                                          |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |
|                                                                                                   |  |



#### How do we do this on our tech?



#### **Calculator Commands:** Finding tangents on CAS

ভ

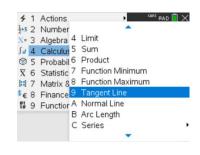
Mathematica

<< SuiteTools`

TangentLine[f[x], x, a]

➤ TI-Nspire

Menu 4 9



tangentLine(f(x),x,a)

Casio Classpad



tangentLine(f(x),x,a)

#### **Question 4 Tech-Active.**

Find the equation of the tangent to  $y = \sin(x)$  at  $x = \frac{\pi}{6}$ .



#### **Sub-Section: Normal Lines**



<u>Discussion:</u> Normal lines are perpendicular to tangent lines. How can we find the gradient of normal line?



#### **Normals**



- A normal is a linear line which is perpendicular to the tangent.
- The gradient of a normal line has to be equal to the **negative reciprocal** of the gradient of the curve at the intersection.

$$y = f(x)$$

(a,f(a))

Normal

$$m_{normal} =$$

#### Question 5 Walkthrough.

Find the equation of the normal to  $f(x) = x^3 - 3x^2 + 5$  at x = 1.



| Questio | n 6  |
|---------|------|
| Quesu   | o nt |

Find the equation of the normal to  $y = e^{2x}$  at x = 0.



| Question 7 Extension.                                                                              |  |
|----------------------------------------------------------------------------------------------------|--|
| Let $f(x) = \log_e(x+2)$ . Find the equation of the normal to $f(x)$ that has a gradient of $-1$ . |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
|                                                                                                    |  |
| Sans for Demonstrates                                                                              |  |
| Space for Personal Notes                                                                           |  |
|                                                                                                    |  |
|                                                                                                    |  |



#### How do we do this on our tech?



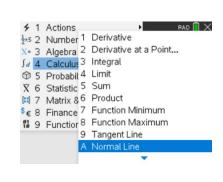
Calculator Commands: Finding normals on CAS

<u>e</u>

- Mathematica
- << SuiteTools`

NormalLine[f[x], x, a]

- ➤ TI-Nspire
  - Menu 4 A



normalLine(f(x),x,a)

#### Casio Classpad



normalLine(f(x),x,a)

#### **Question 8**

Find the equation of the normal to  $y = e^{2x}$  at x = 0.



#### Section B: Optimisation

#### Sub-Section: Absolute Minimum and Maximum



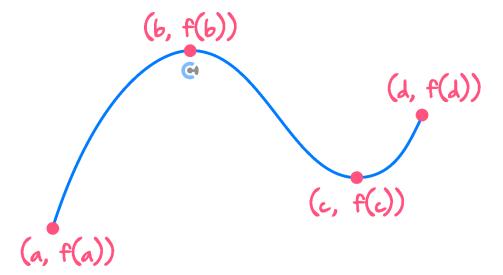
Discussion: Where could the absolute maximum and minimum value lie for a function?



#### **Absolute Maximum and Minimum**



- Absolute Maxima/Minima are the overall largest/smallest \_\_\_\_\_\_ for the given domain.
- They occur at either be an \_\_\_\_\_\_, or a \_\_\_\_\_\_.



Absolute Min: f(a)

Absolute Max: f(b)

- Steps
  - 1. Find stationary points and endpoints.
  - **2.** Find the largest/lowest y value for max/min.

#### Question 9 Walkthrough.

Find the maximum and minimum value of the function given below.

$$f: [-2,2] \to R, f(x) = x^3 - 3x + 4$$

**NOTE:** Find the endpoints and the turning points. Pick the largest y value for max and smallest y value for the minimum.



Active Recall: Steps for finding absolute minimum/maximum



- 1. Find \_\_\_\_\_\_ points and \_\_\_\_\_ points.



#### **Question 10**

Find the maximum and minimum value of the function given below.

$$f: [-1,3] \to R, f(x) = -12x - 3x^2 + 2x^3 - 1$$



Question 11 Extension.

Find the maximum and minimum value of the function given below.

$$f: \left(\frac{1}{2e}, e\right] \to R, f(x) = x \log_e(x)$$







#### <u>Calculator Commands:</u> Finding Absolute Max and Min for $x \in [a, b]$



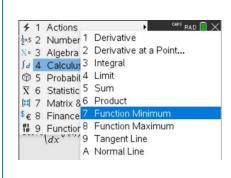
Mathematica

Maximize[ $\{f[x], a \le x \le b\}, x$ ]

Minimize[ $\{f[x], a \le x \le b\}, x$ ]

TI-Nspire

Menu 4 7 and Menu 4 8



fMax(f(x),x,a,b) fMin(f(x),x,a,b)

Casio Classpad



fMax(f(x),x,a,b)

fMin(f(x),x,a,b)

#### **Question 12 Tech-Active.**

Find the maximum and minimum value of the function given below.

$$f: [-5,2] \to R, f(x) = 2x^3 + 3x^2 - 72x - 16$$



#### **Sub-Section**: Optimisation Problems



#### Let's now take a look at their applications!



#### **Optimisation Problems**



- Applying absolute maxima and minima in a real-world setting.
- Steps:
  - 1. Construct a function for the subject you want to find the maximum or minimum of.
  - 2. Find its domain if appropriate.
  - **3.** Find its endpoints and turning points.
  - **4.** Identify the maximum or minimum *y* value.

#### Question 13 Walkthrough.

Find the maximum area of a rectangle whose perimeter is equal to 20 cm.

**TIP:** Always identify first what you want to solve the maximum of.







#### **Active Recall: Steps for optimisation**

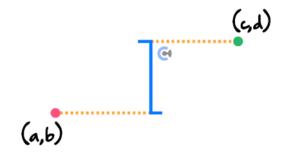


- 1. Construct a \_\_\_\_\_\_ for the subject you want to find the maximum or minimum of.
- **2.** Find its \_\_\_\_\_\_ if appropriate.
- **3.** Find its \_\_\_\_\_\_ and \_\_\_\_\_ points.
- **4.** Identify \_\_\_\_\_\_ or \_\_\_\_\_ *y* value.

#### **REMINDER**

0

Vertical distance between two functions.



 $\blacktriangleright$  Simply find the difference between their y values.

#### **Question 14**

Find the minimum vertical distance between the functions  $f(x) = x^2 + 16$  and g(x) = x - 10.





Two positive variables x and y are such that  $x^2y=32$ . Another variable z is given by z=x+y. Find the minimum value of z.

TIP: If there is no end point, simply look for the turning point!





#### Section C: Newton's Method

#### Sub-Section: Introduction to Newton's Method

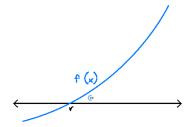


#### What is the Newton's method used for?



**Context:** Introduction to Newton's Method

Consider the function:



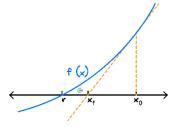
$$f(x) = x^2 - \sin(x)$$

Is it easy to find the x-intercept? [Easy, Meh, Impossible without CAS!]

#### What should we do now?

- Let's first draw a tangent at  $x = x_0$ .
- Compare the *x*-intercept of f(x) and the tangent.

Are they similar[Yes, No, they are too far away.]



#### This is Newton's method!

It approximates the \_\_\_\_\_using \_\_\_\_\_.



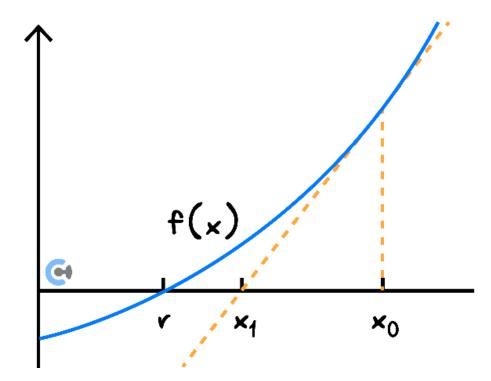
| <b>Question 16 Walkthrough. Tech-Active</b> | Question | 16 | Walkthrough, | <b>Tech-Active</b> |
|---------------------------------------------|----------|----|--------------|--------------------|
|---------------------------------------------|----------|----|--------------|--------------------|

Estimate the x-intercept of f(x) = (x - 3)(x + 2) using the tangent made at x = 4. Determine the error of the approximation, giving your answer in 4 decimal places.



#### Is there a way to find x-intercept of tangent quickly?

<u>Exploration</u>: Finding x-intercepts of a tangent made at  $x = x_0$ 



- Say tangent is made at \_\_\_\_\_ and the x-intercept of the tangent is \_\_\_\_\_.
- Then,

$$f'(x_0) =$$

Now rearrange for x<sub>1</sub> (x-intercept of the tangent);

$$x_0 - x_1 = \frac{f(x_0) - 0}{f'(x_0)}$$

$$x_1 =$$

• Where  $x_1$  is the x-intercept of the tangent made at \_\_\_\_\_.



TIP: To memorise which one is on the bottom, remember "Denominator is the derivative" ("DD").





## Let's try the previous question again using the formula above!

| Question 17 Tech-Active.                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimate the <i>x</i> -intercept of $f(x) = (x - 3)(x + 2)$ using the tangent made at $x = 4$ . Determine the error of the approximation, giving your answer in 4 decimal places. |
|                                                                                                                                                                                   |
|                                                                                                                                                                                   |
|                                                                                                                                                                                   |
|                                                                                                                                                                                   |
|                                                                                                                                                                                   |
|                                                                                                                                                                                   |
|                                                                                                                                                                                   |



**Sub-Section**: Minimising Error



How do we minimise errors?

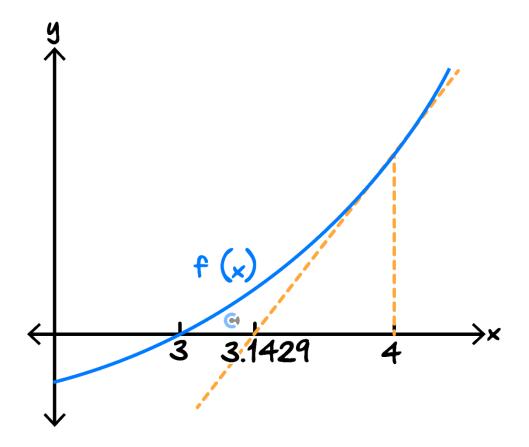


Where should the tangent be drawn for better accuracy?



#### **Exploration: Minimise Error**

We used the x-intercept of the tangent made at x = 4 and the error was 0.1429.



- To minimise error should we make the tangent closer or further from 3? [Closer/Further]
- If we didn't know the actual x-intercept (x = 3), at which x value should the next tangent be drawn?

*x* = \_\_\_\_\_





#### Let's try this out!

#### **Question 18 Tech-Active.**

| a. | Estimate the x-intercept of $f(x) = (x - 3)(x + 2)$ using the tangent made at $x = 3.14286$ . Determine the |
|----|-------------------------------------------------------------------------------------------------------------|
|    | error of the approximation, giving your answer in 4 decimal places.                                         |

**b.** Is it more accurate than before?

c. Estimate the x-intercept of f(x) = (x - 3)(x + 2) using the tangent made at x = 3.00386. Determine the error of the approximation, giving your answer in 4 decimal places.

Discussion: Imagine if we repeated this process 10 times, what would happen to the error?

 $\begin{aligned} & \text{(i))} \cdot f(x_i) := \log(x+2) \\ & \text{(i)} := f'(x) \\ & \text{(i)} := \frac{1}{x+2} \end{aligned}$ 

 $\{x \in \{x \to -1\}\}$   $\{x \in \{x \to -1\}\}$  $\{x \in \{x \to -1\}\}$ 

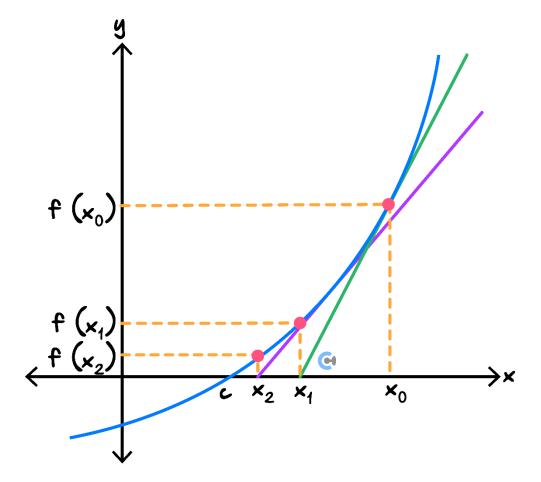




#### Performing the above process multiple times is called Newton's method!

#### **Newton's Method**

 $\blacktriangleright$  It is a method of approximating the x-intercept using tangents.



$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

#### Steps

- 1. Find the tangent at the x value given.
- 2. Find the x-intercept of the tangent using an iterative formula.
- **3.** Find the next tangent at the x = x-intercept of the previous tangent.
- **4.** Repeat until the value doesn't change by much.



Question 19 Walkthrough. Tech-Active.

Consider the function  $f(x) = x^3 - 5$ .

**a.** Show that Newton's method gives the iterative formula  $x_{n+1} = \frac{2x_n^3 + 5}{3x_n^2}$ .

**b.** Find the approximation of x-intercept of f(x) giving your answer correct to 4 decimal places. Start  $x_0 = 2$ .



#### **Active Recall: Newton's Formula**



$$x_{n+1} =$$
\_\_\_\_\_

#### Question 20 Tech-Active.

Consider the function  $f(x) = x^5 - 8$ .

**a.** Show that Newton's method gives the iterative formula:

$$x_{n+1} = \frac{4x_n^5 + 8}{5x_n^4}$$

**b.** Find the approximation of x-intercept of f(x) giving your answer correct to 4 decimal places. Start  $x_0 = 2$ .



#### **Sub-Section**: Tolerance



#### Could the question tell us when to stop?



#### **Tolerance**



**Definition**: The maximum difference between  $x_n$  and  $x_{n+1}$  we can have when we stop the iteration.

We stop when  $|x_{n+1} - x_n| < Tolerance$ .

The question will give us the tolerance level.

**NOTE:** It is how much error we are willing to tolerate.



#### Question 21 Tech-Active.

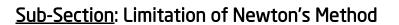
Find the root of  $f(x) = x^3 - 12$  using Newton's method with a tolerance of 0.01 and initial value of 3. Give your answer correct to two decimal places.





| Question 22 Tech-Active.                                                                                                                                        |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Find the root of $f(x) = 1 - x^2 e^{2x}$ using Newton's method with a tolerance of 0.001 and initial value of 1. O your answer correct to three decimal places. | Зive |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
| Constant Demonstration                                                                                                                                          |      |
| Space for Personal Notes                                                                                                                                        |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |
|                                                                                                                                                                 |      |



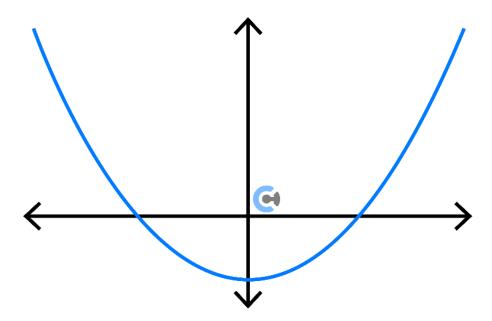




#### When does Newton's method not work?

#### **Exploration**: 1. Terminating Sequence

Consider the graph below.

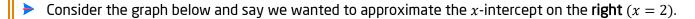


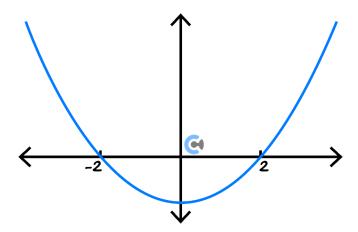
 $\blacktriangleright$  What happens when  $x_0 = 0$ ?

 $\blacktriangleright$  Hence, when Newton's method reaches the x value of the stationary point, it \_\_\_\_\_\_.



#### **Exploration**: 2. Approximating the Wrong Root

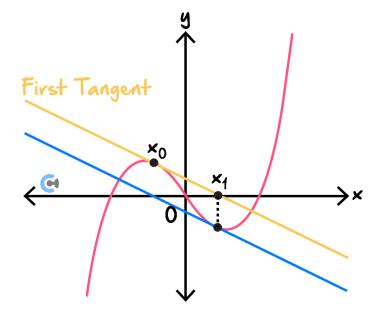




- What happens when  $x_0 = -1$ , do we approximate x = -2 or x = 2? [-2/2]
- ▶ When Newton's method starts at the wrong side of the turning point, it can approximate the

#### **Exploration**: 3. Oscillating Sequence

Consider the graph.



- What is the value of  $x_2$ , the next term of the sequence?
- $\blacktriangleright$  Hence, would Newton's method approximation get closer to the actual x-intercept at x=0? [Yes/No]



#### **Limitation of Newton's Method**



- Terminating Sequence: Occurs when we hit a stationary point.
- Approximating a Wrong Root: Occurs when we start on the wrong side.
- Oscillating Sequence: Occurs when we oscillate between two values without getting closer to the real root.

#### Question 23 Tech-Active.

Consider the function  $f(x) = (x - 1)^2 - 1$ .

**a.** Write down the Newton iteration formula for  $x_{n+1}$ .

**b.** What limitation of Newton's method do we get if  $x_0 = 1$ ?



Question 24 Tech-Active.

Consider the function  $f(x) = \frac{x}{\sqrt{x^2 + 1}}$ .

**a.** Perform three iterations of Newton's method with starting point x = 1.

**b.** What limitation of Newton's method did we get here?





#### **Contour Checklist**

#### □ <u>Learning Objective</u>: [2.4.1] – Find Tangents and Normals

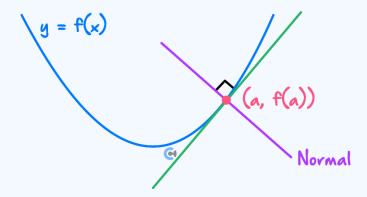
#### **Key Takeaways**

- A tangent is a linear line which just \_\_\_\_\_\_ the curve.
- ☐ The gradient of a tangent line has to be equal to the \_\_\_\_\_\_ of the curve at the intersection.

$$y = f(x)$$
(a,  $f(a)$ )

$$At(a, f(a)): m_{tangent} = \underline{\hspace{1cm}}$$

- Normals
  - A **normal** is a linear line which is \_\_\_\_\_\_ to the tangent.
  - The gradient of a normal line has to equal to the \_\_\_\_\_\_ of the gradient of the curve at the intersection.



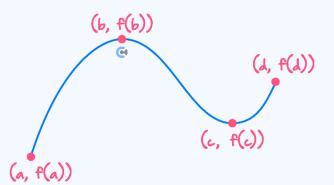
$$At(a, f(a)): m_{normal} = \underline{\hspace{1cm}}$$



#### □ <u>Learning Objective</u>: [2.4.2] - Find Minimum and Maximum

#### **Key Takeaways**

- Absolute Maximum and Minimum
  - O Absolute Maxima/Minima are the overall largest/smallest \_\_\_\_\_\_ for the given domain.
  - O They occur at either be an \_\_\_\_\_\_\_ or a \_\_\_\_\_\_



Absolute Min: \_\_\_\_\_

Absolute Max:

- Steps
  - 1. Find \_\_\_\_\_ points and \_\_\_\_ points
  - 2. Find the \_\_\_\_\_ y value for max/min.
- Steps for optimisation
  - 1. Construct a \_\_\_\_\_ for the subject you want to find the maximum or minimum of.
  - 2. Find its \_\_\_\_\_\_ if appropriate.
  - **3.** Find its \_\_\_\_\_\_ and \_\_\_\_\_ points.
  - **4.** Identify \_\_\_\_\_\_ or \_\_\_\_\_ *y* value.

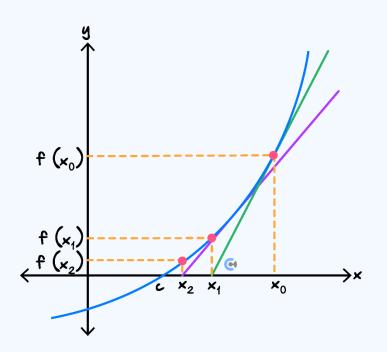


## Learning Objective: [2.4.3] - Apply Newton's Method to Find the Approximation of a Root and its Limitations

#### **Key Takeaways**

Newton's Method

O It is a method of approximating the *x*-intercept using \_\_\_\_\_\_



$$x_{n+1} =$$
\_\_\_\_\_\_

Steps

1. Find the  $\underline{\hspace{1cm}}$  at the x value given.

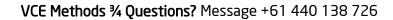
2. Find the \_\_\_\_\_ of the tangent using iterative formula.

**3.** Find the next tangent at the x =\_\_\_\_\_ of the previous tangent.

**4.** Repeat until the value doesn't change by much.

**Tolerance**: The maximum difference between  $x_n$  and  $x_{n+1}$  we can have when we stop the iteration.

*We stop when*  $|x_{n+1} - x_n| <$ \_\_\_\_\_.





| O Approximating a Wrong Root: Occurs when we start on the |  |  |  |  |
|-----------------------------------------------------------|--|--|--|--|
| ing                                                       |  |  |  |  |
|                                                           |  |  |  |  |



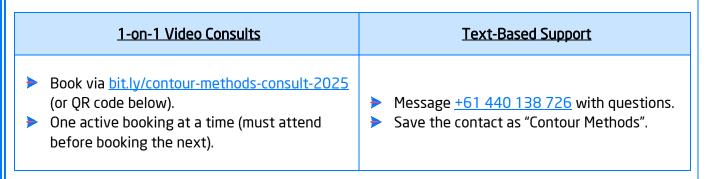
Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

#### VCE Mathematical Methods 34

## Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.



Booking Link for Consults bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

