

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ¾
Applications of Differentiation [2.4]

Test Solutions

25.5 Marks. 33 Minutes Writing.

Results:

Test Questions	/ 16.5	
Extension Test Questions	/9	

Section A: Test Questions (16.5 Marks)

INSTRUCTION: 16.5 Marks. 21 Minutes Writing.

Question 1 (3.5 marks)

Tick whether the following statements are **true** or **false**.

		True	False
a.	Tangents and normals are always perpendicular to each other if they are formed at the same point.	✓	
b.	To find the tangent line of $f(x)$ which passes through (a,b) we first need to solve $\frac{f(x)-b}{x-a} = f'(x)$ to identify where the tangent was made.	✓	
c.	To find the minimum or maximum of any function, we just need to find their stationary points.		✓
d.	For optimisation questions, it is important to construct the function for which we want to find the maximum or minimum.	<	
e.	Newton's iterative formula is given by $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$.		✓
f.	The purpose of Newton's method is to approximate the solution to any equation.	✓	
g.	Terminating sequence for Newton's method occurs when the x -value of a stationary point is reached within the sequence.	✓	

	Space for Personal Notes
I	
I	
I	

Question 2 (2 marks)

Find the equation of the line that is normal to $y = x^3 - 2x^2 + 3x$ at x = 1.

 $ln[135] = f[x_] := x^3 - 2x^2 + 3x$
 In[136]:=
 Out[136]= $-\frac{1}{2}$
 In[139]:= y == -1/2 (x - 1) + f[1] // Expand
 Out[139]= $y == \frac{5}{2} - \frac{x}{2}$

Space for Personal Notes

Question 3 (3 marks)

Consider the function $f:(2,\infty)\to R$, $f(x)=\frac{3}{x-2}$. Find the equation(s) of the lines tangent to f, which are parallel to the line $y=-\frac{1}{3}x+2$.

```
In[1]= f[x_{-}] := 3/(x-2)

f'[x]

Out[2]= -\frac{3}{(-2+x)^2}

In[3]= Solve[f'[x] == -1/3]

Out[3]= \{\{x \to -1\}, \{x \to 5\}\}

y == -1/3 (x+1) + f[-1] // Expand (*Tangent at x = -1, parallel to the given line*)

Out[6]= y == -\frac{4}{3} - \frac{x}{3}

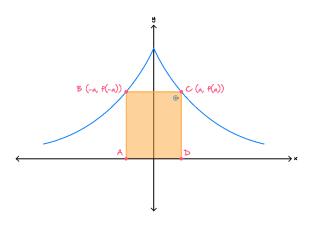
y == -1/3 (x-5) + f[5] // Expand (*Tangent at x = 5, parallel to the given line*)

Out[7]= y == -\frac{8}{3} - \frac{x}{3}
```

Space for Personal Notes

Question 4 (4 marks)

Consider the hybrid function $f(x) = \begin{cases} 2e^x, & -2 \le x < 0 \\ 2e^{-x}, & 0 \le x \le 2 \end{cases}$



A rectangle has vertices ABCD, as shown in the diagram below, with coordinates A(-a, 0), B(-a, f(-a)), C(a, f(a)) and D(a, 0), where a > 0.

a. Find the area A of rectangle ABCD in terms of a. (1 mark)

By symmetry: $A = 2a \times f(a) = 4ae^{-a}$

b. Find the value of a of which A is the maximum. (2 marks)

In[101]:= Solve[D[4 a e^{-a}, a] == 0, a]

Out[101]=
$$\{\{a \rightarrow 1\}\}$$

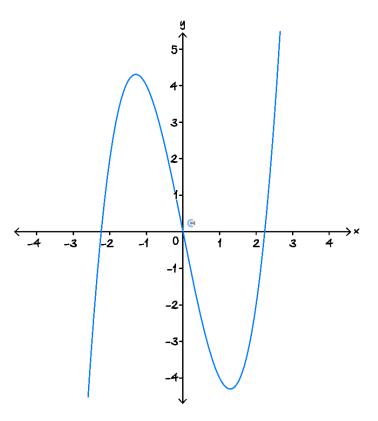
c. Hence, find the maximum area of *ABCD*. (1 mark)

$$In[102]:= 4 a e^{-a} /. a \rightarrow 1$$

$$Out[102]:= \frac{4}{e}$$

Question 5 (4 marks)

Consider the function $f(x) = x^3 - 5x$ on the diagram below.



a. Find x_1 for $x_0 = -1$. (2 marks)

 $\ln[89] = f[x_{]} := x^3 - 5x$ $\ln[90] = n[x_{]} := x - \frac{f[x]}{f'[x]}$

In[91]:= **n[x]**

Out[91]= $x - \frac{-5 x + x^3}{-5 + 3 x^2}$

In[92]:= **n[-1]**

Out[92]= 1

b. Find x_2 . (1 mark)

-1

c. What do you notice? (1 mark)

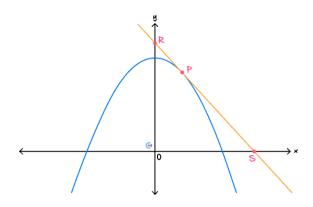
This is an oscillating sequence.

Section B: Extension Test Questions (9 Marks)

INSTRUCTION: 9 Marks. 2 Minutes Reading. 12 Minutes Writing.

Question 6 (9 marks) Tech-Active.

The diagram shows the graph of the function $f(x) = 9 - x^2$.



The graph of the tangent line to the curve at point P(p, f(p)), where $1 \le p \le 3$ is also shown.

a. Determine the equation of this tangent line in terms of p. (1 mark)

b. If the tangent line crosses the x-axis at the point S, and crosses the y-axis at the point R, find the coordinates of the points S and R in terms of P. (2 marks)

Define $t(x)=-2 \cdot p \cdot x + p^2 + 9$	Done	
 t(0)	p ² +9	
 solve(t(x)=0,x)	p ² +9	
	2· p	

c. Hence, find the area A of the triangle OSR in terms of p. (1 mark)

$\frac{1}{2} \cdot \left(p^2 + 9 \right) \cdot \frac{p^2 + 9}{2 \cdot p} \rightarrow a(p)$	Done	
 a(p)	$\frac{\left(p^2+9\right)^2}{4\cdot p}$	

d. Find the **minimum** area of the triangle OSR and the value of p for which the area is minimum. (3 marks)

fMin(a(p),p,1,3) $p=\sqrt{3}$ $a(\sqrt{3})$ $12 \cdot \sqrt{3}$

e. Find the **maximum** area of the triangle OSR and the value of p for which the area is maximum. (2 marks)

 $f_{\text{Max}}(a(p),p,1,3) \qquad p=3$ $a(3) \qquad 27$

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

