

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

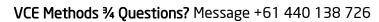
VCE Mathematical Methods ¾
Applications of Differentiation [2.4]
Test

25.5 Marks. 33 Minutes Writing.

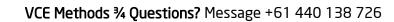
Results:

Test Questions	/ 16.5	
Extension Test Questions	/9	

Section A: Test Questions (16.5 Marks)

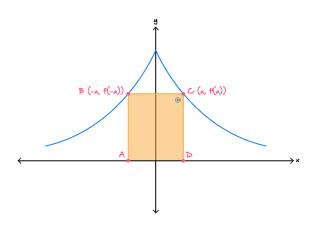

INSTRUCTION: 16.5 Marks. 21 Minutes Writing.

Question 1 (3.5 marks)


Tick whether the following statements are **true** or **false**.

		True	False
a.	Tangents and normals are always perpendicular to each other if they are formed at the same point.		
b.	To find the tangent line of $f(x)$ which passes through (a,b) we first need to solve $\frac{f(x)-b}{x-a} = f'(x)$ to identify where the tangent was made.		
c.	To find the minimum or maximum of any function, we just need to find their stationary points.		
d.	For optimisation questions, it is important to construct the function for which we want to find the maximum or minimum.		
e.	Newton's iterative formula is given by $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$.		
f.	The purpose of Newton's method is to approximate the solution to any equation.		
g.	Terminating sequence for Newton's method occurs when the x -value of a stationary point is reached within the sequence.		

Question 2 (2 marks)		
Find the equation of the line that is normal to $y = x^3 - 2x^2 + 3x$ at $x = 1$.		
Space for Personal Notes		


Question 3 (3 marks)

Consider the function $f: (2, \infty) \to R$, $f(x) = \frac{3}{x-2}$. Find the equation(s) of the lines tangent to f, which are parallel to the line $y = -\frac{1}{3}x + 2$.

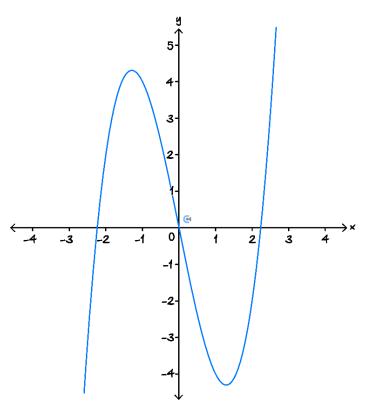
Space for Personal Notes

Question 4 (4 marks)

Consider the hybrid function $f(x) = \begin{cases} 2e^x, & -2 \le x < 0 \\ 2e^{-x}, & 0 \le x \le 2 \end{cases}$

A rectangle has vertices ABCD, as shown in the diagram below, with coordinates A(-a, 0), B(-a, f(-a)), C(a, f(a)) and D(a, 0), where a > 0.

a. Find the area A of rectangle ABCD in terms of a. (1 mark)


b. Find the value of a of which A is the maximum. (2 marks)

c. Hence, find the maximum area of *ABCD*. (1 mark)

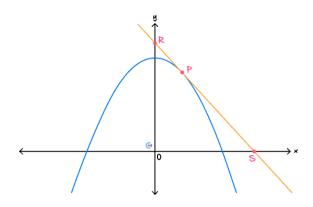
Question 5 (4 marks)

Consider the function $f(x) = x^3 - 5x$ on the diagram below.

a. Find x_1 for $x_0 = -1$. (2 marks)

b.	Find x_2 . (1 mark)

c. What do you notice? (1 mark)


Section B: Extension Test Questions (9 Marks)

INSTRUCTION: 9 Marks. 2 Minutes Reading. 12 Minutes Writing.

Question 6 (9 marks) Tech-Active.

The diagram shows the graph of the function $f(x) = 9 - x^2$.

The graph of the tangent line to the curve at point P(p, f(p)), where $1 \le p \le 3$ is also shown.

a. Determine the equation of this tangent line in terms of p. (1 mark)

b. If the tangent line crosses the x-axis at the point S, and crosses the y-axis at the point R, find the coordinates of the points S and R in terms of p. (2 marks)

c.	Hence, find the area A of the triangle OSR in terms of p . (1 mark)		
d.	Find the minimum area of the triangle OSR and the value of p for which the area is minimum. (3 marks)		
e.	Find the maximum area of the triangle OSR and the value of p for which the area is maximum. (2 marks)		
Sp	ace for Personal Notes		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods 3/4

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

